Upgrade of XCET by BE/BI

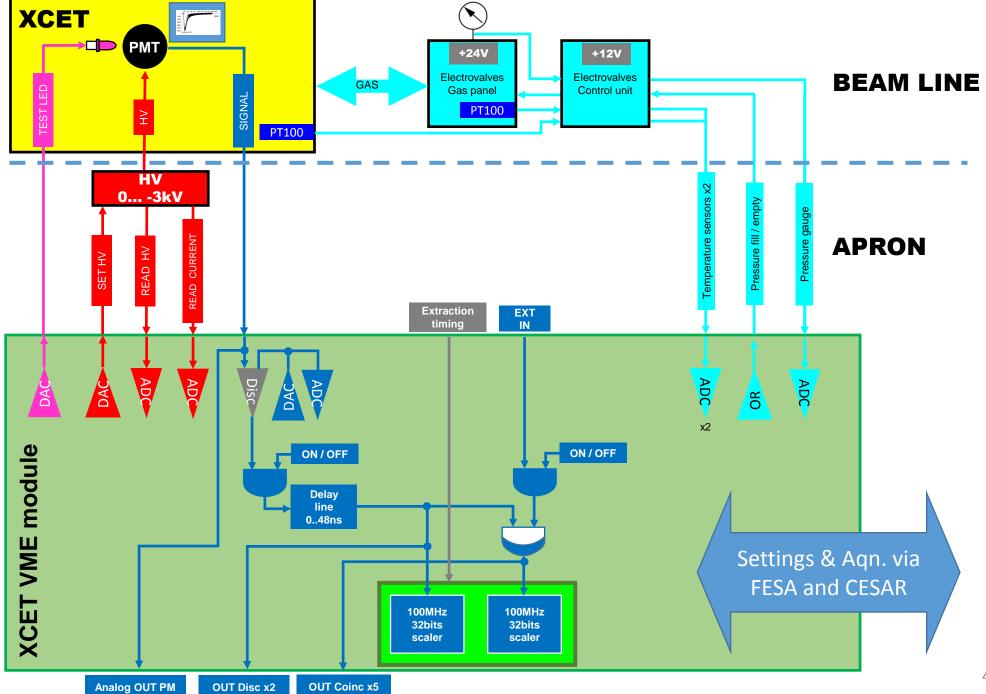
J. Tan, I Ortega-Ruiz, S. Deschamps, W. Devauchelle, A. Lis BI-EA and BI-SW

Agenda

□Overview the XCET system

- □LS2 changes
 - NA type acquisition system
 - Gas panel
 - Controls module
 - Pressure gauge
 - Preliminary results

□Conclusion


XCET renovation in East Area

Driven by

- New users' request for operating at 15 barg
- Use of two refrigerant gases
- Upgrade of Gas filling/exchange/controls system
- Upgrade of acquisition system: users were left on their own!
- Upgrade of FESA class (CERN wide)

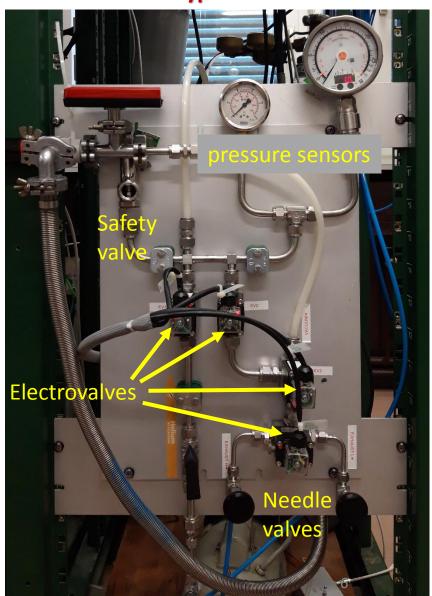


10/07/2020

LS2 changes: NA-type Acquisition Chain

XCET board (2006)

FESA class

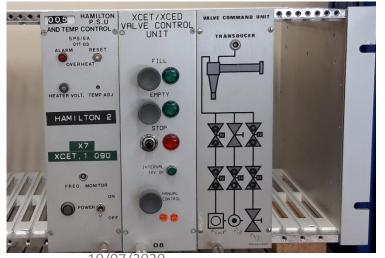

- ☐ Migration to FESA3 : common for EA and NA
- ☐ Controls of PMT settings: HV, counter, delays, discriminator
- Controls of the gas type
- ☐ Two temperature readings
- ☐ Possibility to swap between Hamilton and IFM gauge
- ☐ Input from EN/EA : enthalpy & T regulation for refrigerant gases
- ☐ Todo list
 - Optimisation of gas pressure feedback
 - GUI for pressure scans
 - CESAR: integration of 4 XCETs and tests
- ☐ Completion expected by end 2020

LS2 changes : Gas panel

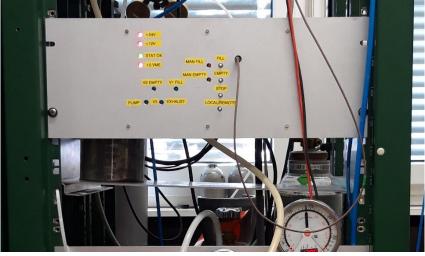
FEATURES

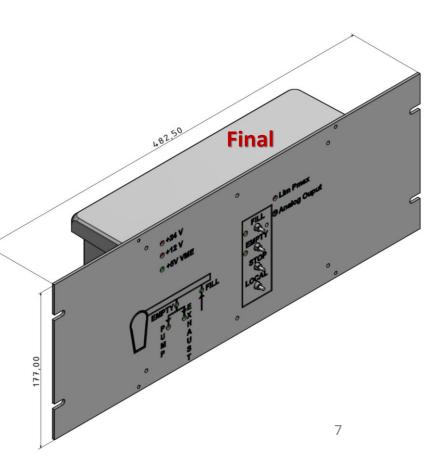
- 24V-electrovalves : x4 (manufacturer : Burkert, DE)
- Two pressure sensors
 - > Electronic for remote acquisition (manufacturer : IFM, DE)
 - ➤ Needle type sensor, for local reading
- Safety valve
- Needle valves for gas pressure limitation of upstream inlet
- Temperarure sensor PT100 in a 4-wire configuration for RT meas.

Prototype under test



LS2 changes : Controls module


FEATURES


- Power supply 12-24VDC for electronics and electrovalves
- Remote or Local command: Fill/empty
- Protection against overpressure: current comparator interlock of P_{max}
- Transmission of status and signals : (Remote, Pressure, Temperatures)

Actual NA system

Prototype under test

LS2 changes: IFM electronic pressure sensor

PRESENT SITUATION: 44-YO HAMILTON GAUGES (adapted from old altimeter technology for aircraft)

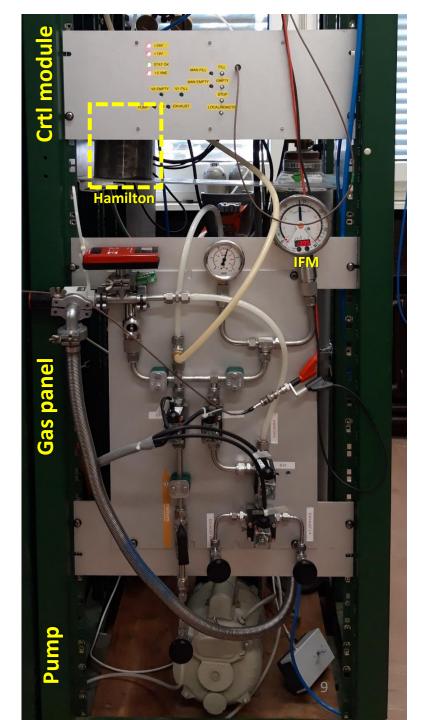
- High precision pressure transducer which is frequency-dependent
- Absolute pressure given by 4th order polynomial degree approximation of 1/f
- Coefficients available only for He, CO₂ and N₂. Unknown for R218 and R134a
- Operates at constant gauge temperature of 40°C
- Our reference Hamilton was last time calibrated in 2002
- Discontinued and must be replaced

NEW PRESSURE GAUGE: IFM

- Working range : [-1, 25 barg]
- East Area P_{max} = 15 barg
- P_{max} <u>locally</u> settable : at P_{max} the sensor interlocks the gas filling
- Transmission of analogue output current I_{IFM} [4mA, 20mA] for long distance transmission
- Pressure sensitivity to temperarure variation: $\Delta P / \Delta T = \pm 3.2 \text{ mb/K}$

MEASURED PERFORMANCES WITH N₂

- On XCET board \Rightarrow 10 mb resolution over full span of 16 bars (or 5 mb resolution over full span of 8 bars)
- Cross calibration with reference Hamilton gauge: frequency measured by a 6.5 digit multimeter
- Precision over 3 measurements : 10-18 mbar for $P \in [8 15]$ barg, < 10 mbar for $P \in [0.1 7]$ barg
- $^{1/07/2020}_{\bullet}$ Linearity: ~ 1 ‰ deviation of the plot $I_{IFM} = f(P_{Hamilton})$ wrt linear fit



Measured performances of the gas system

- Our dummy XCET is a 10 litre-gas bottle
- Extreme care put on all stainless steel pipe connections
- Only preliminary results

	XCET specs EDMS # 2114239	Tests	Medium
P _{max}	15 barg	15 barg	He, CO ₂ , N ₂
P _{min}	< 50 mbar	1.6-2 x10 ⁻² mbar	He, CO ₂ , N ₂
Leak rate	≤ 34.10 ⁻³ mbar l/s	77 x10 ⁻⁶ mbar l/s	Vaccum & CO ₂
Precision	20 mbar	< 18 mbar	N_2
Linearity	Not specified	~1 ‰	N ₂
Resolution	Not specified	10 mbar at full span of 16bar	
Filling speed	≤ 1 hour for 15 barg	To be done with real XCET	
Other gases	R218, R134a	To be done	

From EN/EA we need a second gas panel (electrovalve) assembly

Conclusion

☐ Upgrade of Cerenkov detectors in East Area is progressi	ng well on BI side
☐ XCETs will share common acquisition chain with North	Area: electronics and controls via CESAR, FESA
☐ Maximum gas pressure of 15 barg	
☐ New gas control system with low-voltage electrovalves	: ready for production
☐ Electrovalves and pressure transducer give very promis	ing results: beyond specs.
☐ To be validated with other gases and under real XCET co	onditions
☐ EDMS 2170447 will be released after validation of 2 nd p	rototype assembly
☐ Cabling from T09 / T10 to APRON validated: in EN/EL's §	good hands
☐ No showstopper	

10/07/2020