
Boost-Histogram for Analysis Systems
Team: Henry Schreiner, Hans Dembinski*, Jim Pivarski

Design

Flexibility

Performance

Distribution

A universal need
Histograms are a universal tool used across disciplines. However, for HEP,
rather that just being a useful visualization tool, advanced histograms are
often integral to the entire analysis. This is why we have some of the most
highly developed histogram tools in C++ in ROOT, and why we need a high
quality Python histogramming package.

Boost.Histogram for C++14 was developed by a HEP physisist and accepted
as a general tool into the Boost C++ libraries, the most respected third-
party library collection in the world. In close collaboration with the author,
we have developed boost-histogram for Python.

Our solution
We have proposed the following family of libraries. Unlike previous
attempts, we are building a modular solution and an adaptor. Bold
indicates the library is related to this project, italics is a planned package.

Many attempts at a solution
There are many histogramming libraries for Python, but
all of the fall short in the key areas we care about:
Design, Flexibility, Performance, and Distribution.
Furthermore, they do not talk to each other.

Histograms are made up of components:a storage and 0 or more axis. All the
ROOT histogram types (TH1D, TH2D, TH3D, THND, TProfile1D, etc, can be
represented using just a single histogram type, along with axes types and
configuration not possible in ROOT. Everything is available in the formats
Python users expect; data can be accessed without copy in any Python library.

bh.axis.Regular
 under/overflow
 growth=True
 circular=True
 transform=Log()
 transform=Sqrt()
 transform=Pow(v)
 <any C transform>
bh.axis.Integer
 under/overflow
 growth=True
bh.axis.Variable
 under/overflow
 growth=True
bh.axis.IntCategory
bh.axis.StrCategory
 growth=True

Windows
32-bit / 64-bit
2.7 3.6 3.7 3.8

macOS
64-bit

2.7 3.6 3.7 3.8

Linux (1 & 2010)
32-bit / 64-bit

2.7 3.5 3.6 3.7 3.8W
h

e
e
ls

pip install boost-histogram

Windows
64-bit

3.6 3.7 3.8

macOS
64-bit

2.7 3.6 3.7 3.8

Linux
64-bit / ARM / PowerPC

2.7 3.6 3.7 3.8C
o

n
d

a

conda install boost-histogram --channel conda-forge

+ support for source builds, with only C++14 requirement

The Azure CI-based wheel build system designed for boost-histogram is now being used in several
other Scikit-HEP projects.

, *TU Dortmund

Comparison of fill performance against ROOT and GSL, in C++ using
Boost.Histogram. The dyn-fill bars correspond to to boost-histogram
in Python.

100 bins, 10M events
8-core 2.4 GHz i9 macOS
Numpy: 146 ms
PyROOT: 123 ms
boost: 65 ms or 58 ms
boost MT: 10.3 ms

100x100 bins, 10M events
8-core 2.4 GHz i9 macOS
Numpy: 1.18 s
PyROOT: 157 ms
boost: 93 ms or 76 ms
boost MT: 14.7 ms

Unified Histogram Indexing (UHI)
v = h[b] # Returns bin contents, indexed by bin number
v = h[loc(b)] # Returns the bin containing the value
v = h[loc(b) + 1] # Returns the bin above the one containing the value
v = h[underflow] # Underflow and overflow can be accessed with special tags

h == h[:] # Slice over everything
h2 = h[a:b] # Slice of histogram (includes flow bins)
h2 = h[:b] # Leaving out endpoints is okay
h2 = h[loc(v):] # Slices can be in data coordinates, too
h2 = h[::rebin(2)] # Modification operations (rebin)
h2 = h[a:b:rebin(2)] # Modifications can combine with slices
h2 = h[::sum] # Projection operations
h2 = h[a:b:sum] # Adding endpoints to projection operations
h2 = h[0:len:sum] # removes under or overflow from the calculation
h2 = h[v, a:b] # A single value v is like v:v+1:sum
h2 = h[a:b, ...] # Ellipsis work just like normal numpy

h[b] = v # Returns bin contents, indexed by bin number
h[loc(b)] = v # Returns the bin containing the value
h[underflow] = v # Underflow and overflow can be accessed with special tags
h[...] = array(...) # Setting with an array or histogram sets the contents

Analysis using axes
What traditionally would be multiple histograms can be described as
axes in a single histogram!

value_ax = bh.axis.Regular(100, -5, 5)
bool_ax = bh.axis.Integer(0, 2,
 underflow=False,
 overflow=False)
run_number_ax = bh.axis.IntCategory([], growth=True)

hist = bh.Histogram(value_ax, bool_ax, run_number_ax)

hist.fill(values, bools, run_numbers)

hist_true = hist[:, True, ::bh.sum] # Classic 1D hist

Log transform axis example

Profile histogram example

The future plans
Boost-histogram is ready for broad use; final polishing work is
being down to enable smooth behavior when mixing types, etc.
Boost-histogram has a well defined scope; it does not plot
histograms or convert them; it has no dependencies. Aghast
handles conversions, and Hist will assist in plotting and other
common analysis tasks.

Storages
Double: Multipurpose, supports
fractional weights.
Int64: Good for simple counts.
AtomicInt64: Threadsafe.
Unlimited: Starts as int8 and
grows or converts to double as
needed.
WeightedSum: Holds sum of
weights squared (ROOT's
optional weight tracking).
Mean: A "Profile" histogram,
where means reather than sums
are kept.
WeightedMean: Like Mean, but
tracks the additional variance from
varying weights.

