Team: Henry Schreiner, Hans Dembinski*, Jim Pivarski
Institutions: Princeton University, *TU Dortmund

PRINCETON
UNIVERSITY

Institute for Research & Innovation
in Software for High Energy Physics

Many attempts at a solution

There are many histogramming libraries for Python, but
all of the fall short in the key areas we care about:
Design, Flexibility, Performance, and Distribution.

Boosté—f:‘«

Furthermore, they do not talk to each other.

Scikit

istogram

A universal need

Histograms are a universal tool used across disciplines. However, for HEP,
rather that just being a useful visualization tool, advanced histograms are
often integral to the entire analysis. This is why we have some of the most
highly developed histogram tools in C++ in ROOT, and why we need a high

quality Python histogra

Boost.Histogram for C++14 was developed by a HEP physisist and accepted
as a general tool into the Boost C++ libraries, the most respected third-
party library collection in the world. In close collaboration with the author,

mming package.

we have developed boost-histogram for Python.

Regular axis

(Static)
Storage

Dynamic

Q)

Accumulator
int, double,
unlimited, ...

Regular axis with

|
ax>\\\

Optional underflow

Histograms are made up of components:a storage and O or more axis. All the

i |Iog transform

Optional overflow

theodoregoetz

HEP

Histogrammar

rootplotlib

pyhistogram
Cassius YODA

ghist

PyROOT

matplotlib-hep

numpy

: No or Iitt_Ie
Interaction

fast-histogram

hdrhistogram

Plothon

Storages

Double: Multipurpose, supports
fractional weights.

Int64: Good for simple counts.
AtomicInt64: Threadsafe.
Unlimited: Starts as int8 and
grows or converts to double as
needed.

WeightedSum: Holds sum of
weights squared (ROOT's
optional weight tracking).

Mean: A "Profile" histogram,
where means reather than sums
are kept.

WeightedMean: Like Mean, but
tracks the additional variance from
varying weights.

100 bins, 10M events
8-core 2.4 GHz i9 macOS
Numpy: 146 ms
PyROOT: 123 ms

boost: 65 ms or 58 ms
boost MT: 10.3 ms

100x100 bins, 10M events
8-core 2.4 GHz i9 macOS
Numpy: 1.18 s

PYyROOT: 157 ms

boost: 93 ms or 76 ms

Our solution
We have proposed the following family of libraries. Unlike previous
attempts, we are building a modular solution and an adaptor. Bold
indicates the library is related to this project, italics is a planned package.

pygramll histogram Core histogramming libraries boost-histogram

6D
ROOT 6

boost-dyn-fill
boost-sta-fill
boost-dyn-call
boost-sta-call
3D

ROOT 6
boost-dyn-fill
boost-sta-fill
boost-dyn-call
boost-sta-call
2D

ROOT 6

GSL
boost-dyn-fill
boost-sta-fill
boost-dyn-call
boost-sta-call
1D

ROOT 6

GSL
boost-dyn-fill
boost-sta-fill
boost-dyn-call
boost-sta-call

ROOT

SimpleHist HistBook ‘\ /
arrow 10Cus . I
 svri coffea Universal adaptor aghast
paida hvst
e phy N
Front ends (plotting, etc) hist mplhep coffea others

i

77777777

77

77

boost MT: 14.7 ms 0

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
average CPU cycles per random input value (smaller is better)

ROOT histogram types (TH1D, TH2D, TH3D, THND, TProfilelD, etc, can be
represented using just a single histogram type, along with axes types and
configuration not possible in ROOT. Everything is available in the formats
Python users expect; data can be accessed without copy in any Python library.

Comparison of fill performance against ROOT and GSL, in C++ using
Boost.Histogram. The dyn-fill bars correspond to to boost-histogram
in Python.

Performance

bh.axis.Regular 0 0.5 1

under /overflow T Y Y Y
bh.axis.Regular(10, 0, 1
growth=True axis.Regular()

Distribution pip install boost-histogram

circular=True 0, 27 % Windows Linux (1 & 2010)
transform=Log () g 32-bit / 64-bit 32-bit / 64-bit
transform=Sqrt() - /2 42.7 3.63.73.882.7 3.6 3.7 3.8 @2.7 3.5 3.6 3.7 3.8
transform=Pow(v)
<any C transform> conda install boost-histogram --channel conda-forge
bh.ax1s.Integer bh.axis.Regular(8, 0,37T2/*3np.pi, circular=True) . .
under/overflow g Windows macOS Linux
crowth=True ? Oi3 0i5 } g 64-bit 64-bit 64-bit / ARM / PowerPC
bh.axis.Variable bh.axis.Variable([0, .3, .5, 11) O BEEKEEWACK: 2.7 3.6 3.7 3.8 2.7 3.6 3.7 3.8
under /overflow 0 1 o 3 a4
growth=True oh.axis. Integer (0, 5) + support for source builds, with only C++14 requirement
bh.axis.IntCategory ’
bh.axis.StrCategory 209,83, 7,

The Azure CI-based wheel build system designed for boost-histogram is now being used in several

bh.axis.Category([2, 5, 8, 3, 7]) other Scikit-HEP projects.

growth=True

Unified Histogram Indexing (UHI) Analysis using axes .
v = h[b] # Returns bin contents, indexed by bin number What traditionally would be multiple histograms can be described as
v = h[loc(b)] # Returns the bin containing the value axes in a single histogram! 0.20 1
v = h[loc(b) + 1] # Returns the bin above the one containing the value 1 - bh < R 1 100. -5 & 015 .
v = h[underflow] # Underflow and overflow can be accessed with special tags gzo$e;ix-_bh éiﬁ;siniggeizé 2’ > 5)
— - i .)) 0.10 -

h == h[:] # Slice over everything undertlow=False, s |
h2 = h[a:b] # Slice of histogram (includes flow bins) overflow=False) |
h2 = h[:b] 4 Leaving out endpoints is okay run_number_ax = bh.axis.IntCategory([], growth=True) 0.00 - 2 ' ’ ’ -
h2 = h[loc(v) :] # Slices can be in data coordinates, too , _ , Lo transform aXis exam |e
h2 = h[::rebin(2)] 4 Modification operations (rebin) hist = bh.Histogram(value_ax, bool_ax, run_number_ax) EJ ID
h2 = h[a:b:rebin(2)] # Modifications can combine with slices , ,
h2 = h[::sum] 4 Projection operations hist.fill(values, bools, run_numbers) 4-
h2 = h[a:b:sum] # Adding endpoints to projection operations : . . . , : .
h2 = h[0:len:sum] # removes under or overflow from the calculation hist_true = hist[:, True, ::bh.sum] # Classic 1D hist &
h2 = h[v, a:b] # A single value v 1is like v:v+1l:sum The future plans 1+
h2 = hla:b, ...] # Ellipsis work just like normal numpy Boost-histogram is ready for broad use; final polishing work is o

_ : . . being down to enable smooth behavior when mixing types, etc. -1
hibl = v Returns bin C?ntents’ .”.‘dexed by bin number Boost-histogram has a well defined scope; it does not plot -2
h{loc(b)] = v Returns the bin containing the value

h[underflow] = v
h{...] = array(...)

H H H H

Underflow and overflow can be accessed with special tags

Setting with an array or histogram sets the contents

histograms or convert them; it has no dependencies. Aghast
handles conversions, and Hist will assist in plotting and other
common analysis tasks.

-1.0 -05 0.0 0.5 10

Profile hiStogkam éxample

This project is supported by the National Science Foundation under Cooperative Agreement OAC-1836650 (IRIS-HEP) and grant OAC-1450377 (DIANA/HEP).

Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

