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Tracking Challenge @ HL-LHC
The determination of charged 
particle trajectories in collisions at 
the Large Hadron Collider (LHC) 
is an important but challenging 
problem, especially in the high 
interaction pileup conditions 
present during HL-LHC running
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Our baseline is an approach described in [2]:

Methodology

Graph Neural Networks

Data

MLOps for Productivity & Reproducibility
We are using MLFlow to 
manage and track our 
ML training workflows
→ Provenance tracking & 
reproducibility of results!

This is part of a broader 
effort on scalable CI for 
reproducibility in the 
NSF SCAILFIN Project

FPGA Acceleration
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Training

Tracking detector measurements are represented as 
graph nodes which are associated with one another by 
learned graph edges that represent the particle tracks
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We use the open TrackML Data for training & evaluation
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● Preprocessing for GNN models use HEP.TrkX 
libraries [3] with a truth particle pT> 2 GeV cut

● Trained on 7080 evts / Validated on 1770 evts
● ~30 mins to train on the U. Illinois ML platform
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Signal Efficiency: 98.6%
Signal Fakes: 3.0%

log(Loss) vs. 
Training Epoch

Noise Efficiency: 97.0%
Noise Fakes: 1.4%
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Edge Classification Summary:
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● Data relationships in many real-world applications 
can be naturally represented by graphs

● Graph Neural Networks (GNNs) are deep learning based 
methods that capture dependencies on graphs via message 
passing between the nodes of graphs [1]

● GNNs are well-suited to pattern recognition－a key element 
of reconstructing charged particles in tracking detectors [2]

[3] https://github.com/esaliya/heptrkx-gnn-tracking

● Systematic study of tracking performance for architecture and 
hyperparameter variants, including addition of a regression NN

● Study performance (e.g. fake rates) when only including pixel hits
● Development & testing of GNN implementation (HLS) on FPGAs

Results
● GNN-based inference can be implemented 

on FPGAs to accelerate computationally 
expensive parts of the event reconstruction 
such as calorimetry and tracking in the 
ATLAS or CMS High-Level (software) trigger

● Evaluate GNN tracking 
performance & utilization 
on Xilinx & Intel devices

● Coordinate with SSL and 
leverage resources in the 
Innovative Systems Lab @ NCSA
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