YUKAWA UNIFICATIONS AND SUSY THRESHOLDS

Ts. Enkhbat (ICTP, Trieste)

GoranFest, University of Split Split, CROATIA

- SUSY and finite radiative corrections.
- Motivation for non universality in SU(5) GUT.
- SUSY spectrum and the threshold corrections to quark masses.
- FCNC constraints on the spectrum: strange and charm sector.
- Rare decays: $K^+ \rightarrow \pi^+ \nu$, $D^+ \rightarrow \pi^+ \nu$.
- Summary and conclusions.

- Motivation for SUSY
 - stabilize gauge hierarchy
 - Detter gauge coupling unification
 - dark matter
- SUSY breaking
 - Over 100 new parameters beyond the SM
 - 2 new FCNC: $K\bar{K}$ mixing, $\mu \rightarrow e\gamma$
 - $\textcircled{O} \text{ new } CPV \text{ phases} \rightarrow \text{EDM.s for } p \text{, } n \text{ and } e^-$
- To avoid the FCNC and CPV, SUSY breaking scenarios
 - universal (mSUGRA, gauge mediation etc)
 - decoupling (heavy sfermions)
 - alignment (no off diagonal elements)
- In this talk

SUSY SU(5) GUT

• RGE \rightarrow Gauge coupling & b– τ unifications :

$$\alpha_U = \alpha_i$$
 and $Y_b \simeq Y_\tau \ (\sim 13 \div 24\%)$

 $\bullet~\mbox{For lighter generations} \rightarrow \mbox{Wrong GUT relations}$

$$rac{m_d}{m_s} \simeq rac{m_e}{m_\mu}$$
 :GUT prediction
 $rac{m_d}{m_s} \sim O(10) rac{m_e}{m_\mu}$:Experiment

- Solutions
 - Extend Yukawa like interactions

[Georgi Jarlskog, 1979] or higher dimensional operators.

In this talk: Radiative corrections from threshold of heavy fields: Superpartners provide finite SUSY corrections to fermion masses [Buchmuller and Wyler 1983, Hall, Kostelecky and Raby 1986].

RADIATIVE SUSY CORRECTIONS

 Finite SUSY corrections to quark masses: gluino, neutralino, chargino – squark loops

The induced correction by gluino-loop (universal case) :

$$\begin{split} \delta m_d &\simeq -\frac{2}{3} \frac{\alpha_s}{\pi} \left(A_d - \mu Y_d \tan \beta \right) v_d m_{\tilde{g}} I(m_{\tilde{g}}^2, m_{\tilde{d}_1}^2, m_{\tilde{d}_2}^2) \\ &\simeq -\frac{\alpha_s}{3\pi} \frac{\left(a_0 - \mu \tan \beta \right) m_{\tilde{g}}}{\tilde{m}^2} m_d^0 \text{ for } A_f = Y_f a_0 \end{split}$$

where $\tilde{m} = Max(m_{\tilde{g}}, m_{\tilde{d_1}}, m_{\tilde{d_2}})$

RADIATIVE SUSY CORRECTIONS CNTD

• For universal soft parameters (usually the case for the lighter generations)

$$\frac{\delta m_d}{m_d^0} \simeq \frac{\alpha_s}{3\pi} \frac{\mu m_{\tilde{g}}}{\tilde{m}^2} \tan \beta \sim \operatorname{sign}(\mu m_{\tilde{g}}) \frac{\alpha_s}{3\pi} \tan \beta \sim \pm O(1)$$

Soft mass universality \rightarrow the induced percentage is universal.

- Large $\tan \beta$:
 - **(**) motivated by SO(10) GUT
 - induce large threshold corrections to m_{d_i}

[Hall, Rattazzi and Sarid 1994].

0 large FC effects: Higgs mediated $B_s
ightarrow \mu^+ \mu^-$: [Babu and Kolda 1998].

$$Br(B_s \to \mu^+ \mu^-) \sim \tan \beta^6$$

- In this talk : low and medium an eta
 - the threshold effects from A-term are easier to induce.

NON UNIVERSALITY

- $\bullet\,$ The SUSY thresholds are more prominent for quarks due to strong interaction $\rightarrow\,$
- SU(5) condition: at M_{GUT} Y_{d_i} are set to Y_{l_i}
 - () The needed changes for light flavors (at $M_{SUSY} = 500 \text{ GeV}$)

$$\frac{m_d^{exp}}{m_d^0} \simeq 2.5 \rightarrow \delta m_d \sim 1.5 \text{ MeV}(-3.5 \text{ MeV}) \rightarrow \frac{\delta m_d}{m_d^0} \sim 1.5(-3.5)$$
$$\frac{m_s^{exp}}{m_s^0} \simeq 0.25 \rightarrow \delta m_s \sim -150 \text{ MeV} \rightarrow \frac{\delta m_s}{m_s^0} \sim -0.75$$

Correcting the wrong GUT ratios by SUSY thresholds requires non universality!

[Babu, Dutta and Mohapatra 1999]. , [Diaz Cruz, Murayama and Pierce 2001], [Antusch et al 2009].

• Two choices for non universality:

- Using different soft masses \rightarrow large mass splitting in first two generation squarks. FCNC constraints may push the masses beyond the reach of LHC.
- 2 Choice in this talk: Large A-terms subject to local stability condition.

LOCAL VS GLOBAL MSSM MINIMUM

- MSSM has many color/charge breaking vacua along D-flat directions.
 - Condition for global minimum

$$A_{ij} \lesssim \frac{Y_{ij}}{\sqrt{3}} \sqrt{\tilde{m}_i^2 + \tilde{m}_j^2 + \mu^2 + m_H^2} \text{ for interaction } A_{ij} \tilde{f}_i \tilde{f}_j H$$

more stringent than $K^0-\bar{K}^0$ mixing (not necessary) [Dimopoulos et al 1996].

If the condition of local minimum

$$A_{ij} \lesssim 1.75 \sqrt{\tilde{m}_i^2 + \tilde{m}_j^2 + \mu^2 + m_H^2}$$
 for interaction $A_{ij} \tilde{f}_i \tilde{f}_j H$

satisfied, the lifetime of the vacuum is longer than the age of the universe.

[Kusenko, Langacker and Segre 1995], [Borzumatti et al 1999].

Yukawas A-terms

$$W_Y = Y_{10} 10 \, 10 \, \overline{5}_H + Y_5 10 \, \overline{5} \, \overline{5}_H$$
$$L_A = A_{10} \tilde{10} \, \tilde{10} \, \tilde{\overline{5}}_H + A_5 \tilde{10} \, \tilde{\overline{5}} \, \tilde{\overline{5}}_H$$

• GUT conditions on soft paramenters (not essential)

$$(Y_5)_{ji} \equiv (Y_d)_{ji} = (Y_l)_{ij}, (A_5)_{ij} \equiv (A_l)_{ji} = (A_d)_{ij} (m_{\tilde{5}}^2)_{ij} \equiv (m_{\tilde{L}}^2)_{ij} = (m_{\tilde{d}^c}^2)_{ij}, (m_{\tilde{10}}^2)_{ij} \equiv (m_{\tilde{e}^c}^2)_{ij} = (m_{\tilde{u}^c}^2)_{ij} = (m_{\tilde{Q}}^2)_{ij}$$

• In the basis Y_5 diagonal we choose

• $m_{\tilde{10}}^2$, $m_{\tilde{5}}^2$ and A_5 are diagonal. • $A_5 \neq a_0 Y_5$ to induce the needed threshold corrections

LARGE A TERM, INITIAL CONDITIONS

• The choice at GUT scale (simultaniously diagonalized with Yukawas but not proportional)

$$(A_5)_{ij} = a_i \delta_{ij} \neq a_0 Y_{5_i}$$

• [Diaz Cruz, Murayama and Pierce, 2001].

$$(A_5)_{2\times 2} = a_0 \begin{pmatrix} 0 & \lambda_c \\ \lambda_c & 1 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & A \end{pmatrix}$$

 $\begin{array}{ccc} \bullet & \mu \rightarrow e\gamma : \ m_{\tilde{l}} \gtrsim 6 \ {\rm TeV} \\ \hline \bullet & {\rm Beyond \ the \ reach \ of \ LHC} \end{array}$

• In this work, in the basis Y_5 diagonal $Y_{10} = V_{CKM} Y_{10}^{diag}$:

*m*²₁₀, *m*²₅ and *A*₅ are diagonal *A*₅ ≠ *a*₀*Y*₅ while *A*₁₀ = *a*₀*Y*₁₀
This choice leads to light SUSY spectrum below 1 TeV.

• Parameter choice at GUT scale:

aneta	5	10	15	25
$m_{1/2}$	-0.20	-0.21	-0.23	-0.23
$m_{\tilde{Q}_i}^2 \equiv m_{\tilde{10}}^2$	0.392	0.28	0.28	0.392
$m^2_{\tilde{d}_i} \equiv m^2_{\tilde{5}}$	0.448	0.32	0.32	0.448

• Parameter choice at M_{SUSY} :

an eta	5	10	15	25
μ	0.30	0.30	0.30	0.85
A_d	3.1	7.7	8.5	22.0
A_s	-0.34	-0.78	-0.76	-0.86

• A_s and soft masses are in TeV and TeV², A_d is in GeV.

• The threshold corrections to light down type quark masses at $(M_{SUSY}) = 500 {\rm \ GeV}$

an eta	5	10	15	25
$\delta m_d \; {\rm MeV}$	1.48	1.61	1.32	1.61
$\delta m_s~{ m GeV}$	-0.157	-0.163	-0.157	-0.154

- We used publicly available SOFTSUSY, C++ code for our calculation.
- We have performed RGE calculation taking into account full flavor structure.
- All relevant SUSY threshold corrections are resummed including subleading effects.

• RGE to $M_{EW} \longrightarrow$ Non universal soft masses:

an eta	5	10	15	25
$m^{2}_{\tilde{Q}_{1}}$	0.807	0.466	0.506	0.613
$m_{\tilde{Q}_2}^2$	0.715	0.401	0.429	0.496
$m_{\tilde{Q}_3}^{\tilde{q}_2}$	0.520	0.270	0.294	0.327
$m^2_{\tilde{d}^c_1}$	0.795	0.487	0.525	0.650
$m^{2^{1}}_{\tilde{d}^{c}_{2}}$	0.610	0.357	0.349	0.414
$m^2_{\tilde{d}^c_3}$	0.777	0.474	0.493	0.542

The soft mass params are in ${\rm TeV}^2$

• Non-universal A-term for Unifications $Y_{e_i} = Y_{d_i}$ split the soft masses.

• Slepton mass parameters in TeV²:

$\tan\beta$	5	10	15	25
$m_{\tilde{L}_1}^2$	0.386	0.346	0.349	0.471
$m_{\tilde{L}_2}^2$	0.342	0.316	0.306	0.414
$m_{\tilde{L}_3}^2$	0.383	0.343	0.341	0.442
$m_{\tilde{e}_1^c}^{\overline{2}}$	0.264	0.263	0.270	0.389
$m^{2}_{\tilde{e}^{c}_{2}}$	0.175	0.202	0.186	0.274
$m^{2^{\tilde{c}}}_{ ilde{e}_3^c}$	0.258	0.257	0.255	0.331

• Gluino, charginos and neutralinos ($\tan\beta=15$)

Meson mass splittings

Results for mass splittings for different meson(here only non SM contributions):

an eta	5	10	15	25
$\Delta M_D imes 10^{-14}~{ m GeV}$	0.578	1.23	1.48	1.18
$\Delta M_K imes 10^{-15}~{ m GeV}$	0.027	0.199	-0.447	0.0342
$\Delta M_B imes 10^{-16} { m ~GeV}$	1.9	1.46	1.07	1.37
$\Delta M_{B_s} imes 10^{-14} { m ~GeV}$	1.67	1.16	6.06	4.39

Experimental values (HFAG):

$$\begin{array}{l|ll} \Delta M_D & (1.57\pm^{0.438}_{0.471})\times 10^{-14} \ {\rm GeV} \\ \Delta M_K & (3.483\pm 0.033)\times 10^{-15} \ {\rm GeV} \\ \Delta M_B & (3.337\pm 0.006)\times 10^{-13} \ {\rm GeV} \\ \Delta M_{B_s} & (1.17\pm 0.008)\times 10^{-11} \ {\rm GeV} \end{array}$$

RARE DECAYS

- The RGE induced mass splitting of first two generation sfermions lead to FCNCs.
- \bullet The results for $D^+ \to \pi^+ \nu \bar{\nu}$ and $K^+ \to \pi^+ \nu \bar{\nu}$ decays

aneta	5	10	15	25
$Br(D^+)$	0.34	0.90	1.03	0.161
$Br(K^+)$	0.018	1.77	5.94	0.134

Here

$$Br(D^+) \equiv B(D^+ \to \pi^+ \nu \bar{\nu}) \times 10^{11}$$
$$Br(K^+) \equiv B(K^+ \to \pi^+ \nu \bar{\nu}) \times 10^{11}$$

- The SM expectation for $B(D^+ \rightarrow \pi^+ \nu \bar{\nu})$ [G. Burdman eta al, 2001] • short distance contribution $\sim 10^{-16}$
 - 2 long distance contribution $\sim 10^{-15}$
 - (3) Aim of BESIII experiment $\sim 10^{-8}$
- The SM expectation for

$$B(K^+ \to \pi^+ \nu \bar{\nu})_{SM} \sim (8.22 \pm 0.84) \times 10^{-11}$$

Experimental status [E787, E949 collaborations] $B(K^+ \rightarrow \pi^+ \nu \bar{\nu})_{Exp} = (15.7 \pm \substack{17.5\\8.2}, 10^{-11})$

TS. ENKHBAT (ICTP, TRIESTE)

• Minimal SUSY SU(5) ightarrow large proton decay rate .

[Murayama and Pierce, 2001].

- Mass splitting between octet and triplet due to nonrenormalizable operator could suppress the proton decay [see eg. Bachas etal 1996 Chkareuli and Gogoladze 1998 Bajc, Perez and Senjanovic, 2001].
- Example of SUSY SO(10) with the SUSY threshold corrections studied by Aulakh et al.

[Aulakh et al 2006 and his talk].

• For further discussions see Dorsner's talk.

CONCLUSIONS

- Finite radiative corrections for fermmion masses studied.
- Minimal SU(5) unifications for Yukawas of light charged leptons and down-type quarks can be achieved by finite SUSY corrections.
- To have unifications for lighter generations certain non universality is needed among soft parameters.
- For low and moderate $\tan \beta$ we obtain the needed corrections for light down type quarks d and s.
- All the sfermions have sub TeV masses: squarks can be observed at LHC.
- The sfermion spectrum displays flavor pattern reflecting a large A-term that could be probed at future colliders.
- The non universality in A_5 lead to rare charm decays.
- The branching fractions for $K^+ \to \pi^+ \nu \bar{\nu}$ could be at the level of the SM expectation.

GORAN, HAPPY BIRTHDAY TO YOU AND MAY W_R BE DISCOVERED AT LHC!