Neutrino Mass and Grand Unification of Flavor

R. N. Mohapatra

Goranfest, June 2010 Split.

Brief Remembrances

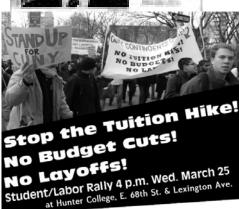
CCNY-70's:

Look back, Look at, Look ahead Joy was doing physics...

Turbulent times

Abe, Carey Rip Stand Seein Sint

ber Bana St.

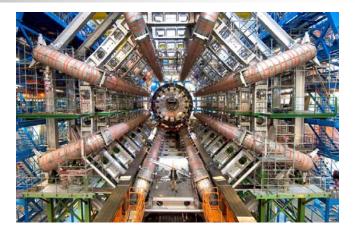


Two Outstanding Problems in Particle Physics Today

Origin of Mass:

--Higgs, SUSY, Extra D

--LHC will probe this:



Origin of Flavor: (this talk)

-- Many non-collider probes:

Quark, Lepton flavor: Definitions

Masses and mixings- two aspects of flavor

Def.
$$L_{mass} = \overline{Q}_L M_{q=u,d} Q_R + \overline{l}_L M_l l_R + v^T m_v v + h.c.$$

• Mass basis: $U_L M_{q,l} U_R^+ = M_{q,l}^{diag}$ and for neutrinos

$$V_{CKM} = U_{u}U_{d}^{+} \qquad U_{PMNS} = U_{l}U_{v}^{+}$$

 $\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \qquad \qquad \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$

Flavor Puzzle < 1998:

- Quark masses and mixings (at GUT scale)
 Up quarks: m_u: m_c: m_t = 0.0008: 0.2:82
- **Down quarks:** $m_d : m_s : m_b = 0.002 : 0.03 : 1$
- Mixings: $V_{us} \approx 0.22; V_{cb} \approx 0.037; V_{ub} \approx 0.003$
- Leptons: $m_e: m_\mu: m_\tau = 0.0005: 0.093: 1.58$
- Note: $m_b \approx m_\tau; m_\mu \approx 3m_s$

WHY?

Attempts to Understand using texture zeros

• Relation: $V_{us} \cong \sqrt{\frac{m_d}{m_s}}$ \rightarrow d-s mass matrix $\begin{pmatrix} 0 & a \\ a & b \end{pmatrix}$

$$a \ll b \rightarrow m_s = b; m_d = -\frac{a^2}{b}; V_{us} = \frac{a}{b} = \sqrt{\frac{m_d}{m_s}}$$
(Weir

(Weinberg; Wilczek,Zee; Fritzsch)

Also GUT scale relations: $m_b \cong m_\tau$ and $m_e m_\mu \approx m_d m_s \Rightarrow Det[M^1] = Det[M^d]$ Finally at GUT scale, $m_\mu \approx 3m_s$ This implies: $M_d = \begin{pmatrix} 0 & a \\ a & b \end{pmatrix}$ whereas $M_l = \begin{pmatrix} 0 & a \\ a & -3b \end{pmatrix}$ (Georgi, Jarlskog)

Neutrino mass discovery has added to this puzzle !

 $(\Delta m^2)_{so}$

 $(\Delta m^2)_{\text{star}}$

- What we know about neutrino masses ?
- Masses: $\Delta m_{sol}^2 \cong 7.67 \times 10^{-5} eV^2$; $\Delta m_{Atm}^2 \cong 2.39 \times 10^{-3} eV^2$
- Mixings: $\sin^2 \theta_{12} \cong .312; \sin^2 \theta_{23} \cong .466 \quad \sin^2 \theta_{13} \le .04$
- Overall mass scale: < .1- 1 eV (roughly)</p>
- To be determined (expts in progress or planning)
 (i) Majorana or Dirac ?
 (ii) Mass ordering: normal or inverted?
 (iii) Value of θ₁₃
 (iv) Any possible CP violation ?

An Interesting mixing pattern ?

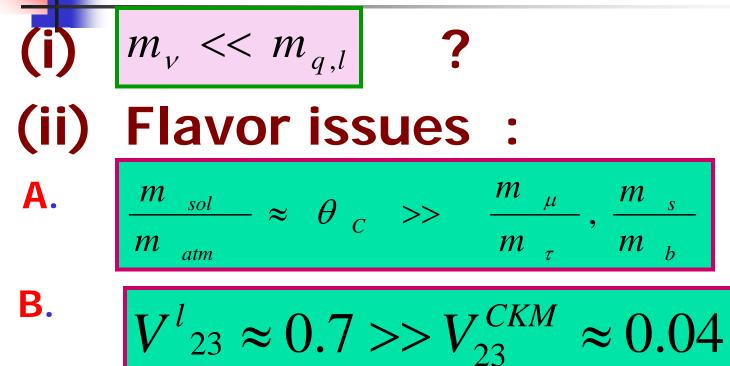
Tri-bi-maximal mixing for neutrinos:

$$\mathbf{U} = \begin{pmatrix} \frac{\sqrt{6}}{3} & \frac{\sqrt{3}}{3} & 0\\ -\frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2}\\ \frac{\sqrt{6}}{6} & -\frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2} \end{pmatrix}$$

(Harrison, Perkins, Scott; Xing; He, Zee)

Is it exact ? If not how big are corrections ?

New Challenges posed by neutrino masses



Quarks and leptons so differentis a unified description of Flavor possible ?

Hints for a strategy for flavor

Small quark mixings: $\rightarrow M_u^0 \propto M_d^0$

Mass hierarchy for quarks and charged leptons: suggests:

$$M^{0}_{u,d,l} \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & m_{t,b,\tau} \end{pmatrix}$$

- Large mixings for leptons $\rightarrow M_l, M_{\nu}$ unrelated.
- Unifying quark-lepton flavors: GUTs

Basic strategy to unify quark-lepton flavor:

Assumption (I): Suppose a theory gives:

$$M_{u} = M_{0} + \delta_{u}$$

$$M_{d} = rM_{0} + \delta_{d}$$

$$M_{1} = rM_{0} + \delta_{1}$$

$$m_{\nu} = f v_L$$

 $\delta_{u,d,l} << M_0$

- Choose basis sof diagonal. Then lepton mixings are given by the matrix that diagonalizes; M_{I}
- For anarchic Mo, quark mixings are small while lepton mixings are large.

How to see that ?

- **Suppose:** $U_0 M_0 U_0^+ = M^{diag}$
- Then $VU_0(rM_0 + \delta_d)U_0^+V^+ = M_d^{diag}$
- Since $\delta_{u,d,l} << M_0$ off-diagonal elements of V are small.

$$V_{CKM} = U_0 U_0^+ V^+ = V^+$$

 On the other hand, elements are large.

$$U_{PMNS} = U_0$$

whose matrix

Rank One mechanism and mass hierarchy

Assumption (II): Mo has rank one i.e.

$$M_{0} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} (a \quad b \quad c)$$

gives mass to third gen fermions: t, b, tau + m_b ≅ m_τ others are massless. Turn on δ_{u,d,l} << M₀
 Other fermions c,s,mu pick up mass with
 M_{c,s,μ} << M_{t,b,τ} and relates mixings to masses

Illustration for 2-Gen. case
Suppose
$$M_0 = \begin{pmatrix} c \\ s \end{pmatrix} (c \ s)$$
 and $f = diag(\varepsilon_2, \varepsilon_3) \propto \delta_{u,d}$

• $\theta = Atm$. angle; chosen large; f <<h.

• Predictions:
$$m_{\tau} \cong m_{b}$$

 $\frac{m_{s}}{m_{b}} \approx -V_{cb} \tan \theta$

consistent with observations:

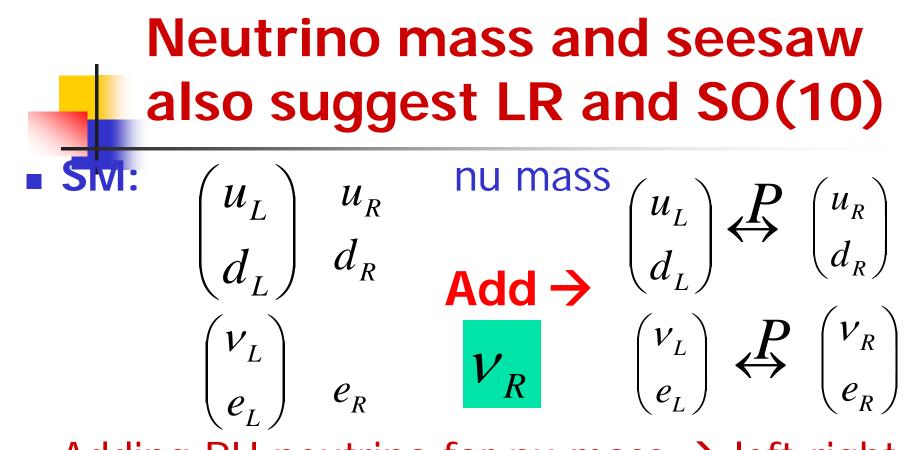
Making model predictive

Key idea: SM sym for massless fermions :[SU(3)]^5;

- Choose subgroup: Discrete subgroup with 3-d. rep.
- Replace Yukawa's by scalar fields (flavons);
- Minima of the flavon theory → Yukawas:
- GUT theory that realizes the new ansatz for flavor

What kind of GUT theory ?

- Recall ansatz: $M_u = M_0 + \delta_u$ as $\delta_{u,d} \to 0, M_u \propto M_d$ $M_d = rM_0 + \delta_d$
- In SM, *u_R d_R* singlets- so M_u, M_d unrelated.
 We need a theory where, $\begin{pmatrix} u_R \\ d_R \end{pmatrix}$ are in a doublet.
- Left-Right symmetric $SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times SU(3)_c$ and SO(10) (which contains LR) are precisely such theories.



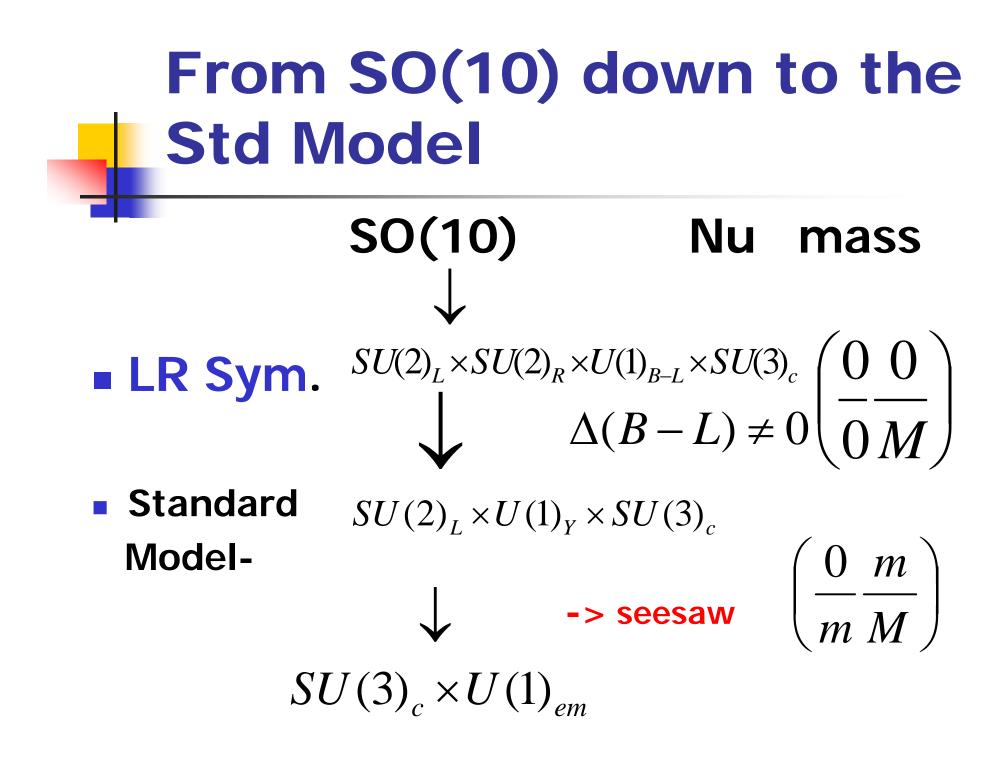
 Adding RH neutrino for nu mass → left-right sym.unification based on SU(2)LXSU(2)RXU(1)B-LXSU(3)c and SO(10)

SUSY SO(10) Features

 Minimal GUT group with complete fermion unification (per family) is SO(10)-its spinor rep contains <u>all 16</u> SM fermions (including RH nu) in single rep.

$$\begin{pmatrix} u & u & u & \nu \\ d & d & d & e \end{pmatrix}_{L,R}$$

- Has B-L needed to understand why MR<< M_PI</p>
- Theory below GUT scale is MSSM:
- B-L needed for naturally stable dark matter.



SUSY SO(10) and unified understanding of flavor

- Fermions in {16}: 16mx16m={10}н+{120}н+{126}н
- Only renorm. couplings for fermion masses: $L_Y = h16 \cdot 16 \cdot 10_H + f16 \cdot 16 \cdot 126_H + h'16 \cdot 16 \cdot [12010]_H$
- Has SM doublets → contributes to fermion mass
- {126}
 H responsible for both neutrino masses and quark masses: → <u>helps to connect quark</u> <u>mixings to neutrino mixings</u>: Unifies quark and lepton flavors: (Babu, Mohapatra, 93)

Fermion mass formulae in renormalizable SO(10)

- Define $Y_f = M_f / v_{wk}$
- The mass formulae:

$$Y_u = h + r_2 f + r_3 h'$$

$$Y_d = r_1(h+f+h')$$

$$Y_e = r_1(h - 3f + c_e h')$$

$$Y_{\nu} = h - 3r_2f + c_{\nu}h'$$

Compare with ansatz

$$M_{u} = M_{0} + \delta_{u}$$
$$M_{d} = rM_{0} + \delta_{d}$$
$$M_{l} = rM_{0} + \delta_{l}$$

Both sets of formulae identical for f, h'<< h</p>

Neutrino mass in Renormalizable SO(10):

- {1'26} has an SU(2) triplet with B-L=2:
 - New formula for nu-mass: $m_{\nu} = fv_{\Delta} - M_{D} \frac{1}{fv_{BL}} M_{D}^{T}$ $v_{\Delta} = \lambda_{\Delta} \mu \frac{v_{wk}^{2}}{M_{\Delta}^{2}}$ $v_{L} = \frac{1}{V_{\Delta}} \frac{v_{wk}^{2}}{M_{\Delta}^{2}}$ $v_{L} = \frac{1}{V_{\Delta}} \frac{v_{wk}^{2}}{M_{\Delta}^{2}}$
- Type II seesaw: $M_{\Delta} \approx M_U$ gives naturally small v • Two independent parameters: M_{Δ}^2, v_R

Lazaridis, Shafi, Wetterich; R.N.M., Senjanovic; Schecter, Valle'81

Type II dominance:
If
$$M_{\Delta} \ll fv_{BL}$$
, first term dominates
Then the fermion mass formula become:
 $Y_u = h + r_2 f + r_3 h'$

$$Y_d = r_1(h + f + h')$$

$$Y_e = r_1(h - 3f + c_e h')$$

$$m_{\nu} \cong f v_{\Delta}$$

(Bajc, Senjanovic, Vissani'02)

$$Y_{\nu} = h - 3r_2f + c_{\nu}h'$$

(Babu, Mohapatra'92)

Neutrino mass and quark and charged lepton masses connected and all ingredients of our ansatz are realized in SO(10).

Rank One mechanism for Flavor

Generic case does not explain mass hierarchies

$$Y_u = h + r_2 f + r_3 h'$$

$$Y_d = r_1(h + f + h')$$

$$Y_e = r_1(h - 3f + c_e h')$$

Assume h is rank 1

$$m_v \cong fv_\Delta$$

$$h = \begin{pmatrix} a \\ b \\ c \end{pmatrix} (a \ b \ c) + f, h' << h$$

- For f, h'=0, only 3rd gen. pick up mass.
- Leads to $m_{s,d} \ll m_b; m_{e,\mu} \ll m_\tau$ with f, h' < <h

• Gives
$$m_{\tau} \cong m_b$$
 and $m_{\mu} = -3m_s$; $\frac{m_{sol}}{m_{atm}} \sim \theta_c$

Origin of Rank one SO(10)

- Rank one model as an effective theory at GUT scale:
- Add one vector like matter $\Psi_V \{16\} + \overline{\Psi}_V \{\overline{1}\overline{6}\}$ and singlets: ϕ_i
- Superpotential: $W = \phi_i \psi_i \overline{\Psi}_V + \overline{\Psi}_V \overline{\Psi}_V H + M \overline{\Psi}_V \Psi_V$

$$\underbrace{\psi \quad \overline{\Psi_{V}} \quad \Psi_{V} \Psi_{V} \quad \overline{\Psi_{V}} \quad \psi}_{H}$$

Flavor texture depends on $< \phi_i >$; with symmetries it can be predicted.

VEV alignment from flat directions in an S4 model

Examples: S4 triplet flavon case:

$$W = \frac{1}{2}m\phi^2 - \lambda\phi^3 = \frac{1}{2}m(x^2 + y^2 + z^2) - \lambda xyz.$$

$$\phi = \frac{m}{\lambda} \{ (1, 1, 1) \text{ or } (1, -1, -1) \text{ or } (-1, 1, -1) \text{ or } (-1, -1, 1) \}.$$

• While for
$$W = \frac{1}{2}m\phi^2 - \frac{\kappa_1}{M}(\phi^4)_1 - \frac{\kappa_2}{M}(\phi^4)_2$$

 $\vec{a} = (0, 0, \pm 1), (0, \pm 1, 0), (\pm 1, 0, 0), \vec{b} = (\pm 1, \pm 1, \pm 1), \text{ and } \vec{c} = (0, \pm 1, \pm 1),$

A specific realization with predictive textures:

- Group: SO(10)xS₄ $\supset 3_1 + 3_2 + 2 + 1_1 + 1_2$
- Consider flavons $\phi_{1,2,3} \subset 3_{1,2}$; matter {16} $\subset 3_2$
- Inv effective superpotential at GUT scale:

 $W = (\phi_1 \psi)(\phi_1 \psi)H + (\phi_2 \psi)(\phi_2 \psi)\overline{\Delta} + \phi_3 \psi \psi \overline{\Delta} + \phi_2 \psi \psi H'$

• The flavon vevs align as: $\phi_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \phi_2 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \phi_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$

• Leading to $\mathbf{f} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} + \lambda \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ and $\mathbf{h'} = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}$

Gives realistic model for fermion masses and mixings

• Solar mass $\frac{m_{solar}}{m_{atm}} \cong \lambda \cong \theta_c$ • Bottom-tau: $m_b \approx m_{\tau}$ and $m_{\mu} = -3m_s$

Leading order PMNS: U =

$$\begin{pmatrix} \frac{\sqrt{6}}{3} & \frac{\sqrt{3}}{3} & 0\\ -\frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2}\\ \frac{\sqrt{6}}{6} & -\frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2} \end{pmatrix}$$

Testable prediction:

Bjorken, King, Pakvasa Ferrandis (2004-05)

• Double beta mass 3 meV.

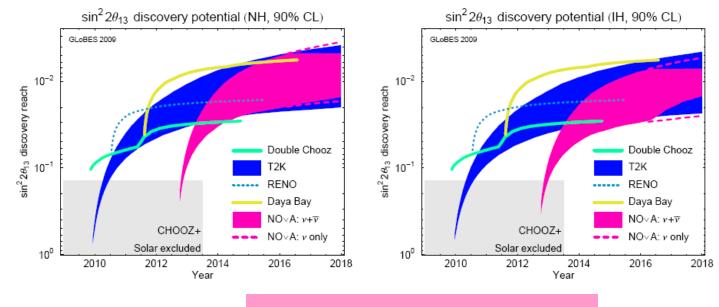
$$\theta_{13} = \frac{\theta_c}{3\sqrt{2}} \cong 0.05$$

Dutta, Mimura, RNM arXiv:0911.2242

Prospects for measuring θ_{13}

Reactor, Long base line e.g. T2K, NoVA:

(Lindner, Huber, Schwetz, Winter'09)



Our prediction

 $\sin^2 2\theta_{13} > 0.01$

GUTs and Proton decay

H_

Ŵ⁺

ũΙ

Ħ,

 $\widetilde{\mathbb{W}}$

- Proton decay in SUSY GUTs have two generic sources:
- (i) Gauge exchange:

$$p \to e^+ \pi^0$$
, $\tau_p^{-1} \approx \left[\frac{g^2}{M_X^2}\right]^2 m_p^5 \approx [10^{36 \pm 1} yr]^-$

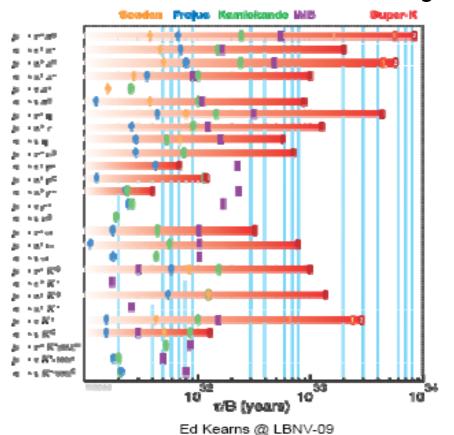
(ii) Higgsino exchange:

$$p \to \bar{\nu}K^+ \\ \tau_p^{-1} \approx \left[\frac{f^2}{M_{H_c}M_{SUSY}}\right]^2 (\frac{\alpha}{4\pi})^2 m_p^5 \approx [10^{28} - 10^{32}yr]^{-1}$$

Present limit: $\tau_{\overline{v}K^+} > 2.3 \times 10^{33} yrs$

Present experimental limits

Super-K, Soudan, IMB, Frejus

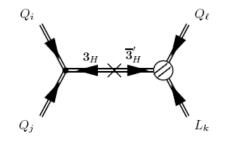


Rank one also solves the proton decay problem

Proton decay problem in SU(5): one Higgs pair s

$$\xrightarrow{_{3_H}} A_p \propto Y_u Y_d$$

 In SO(10), there are more Higgs fields and if flavor structure is such that triplet Higgs do not connect, no p-decay problem:



Choice flavor structure that does it (Dutta, Mimura, RNM'05)

$$h_{10} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}; h_{126} = \begin{pmatrix} 0 & 0 & \lambda^3 \\ 0 & \lambda^2 & \lambda^2 \\ \lambda^3 & \lambda^2 & \lambda^2 \end{pmatrix};$$
$$h_{120} = \begin{pmatrix} 0 & \lambda^3 & \lambda^3 \\ -\lambda^3 & 0 & \lambda^2 \\ -\lambda^3 & -\lambda^2 & 0 \end{pmatrix};$$

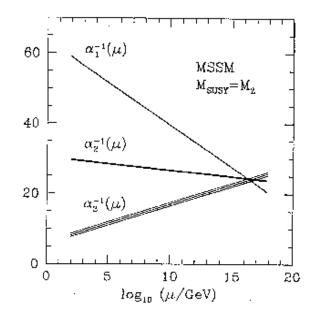
Conclusion:

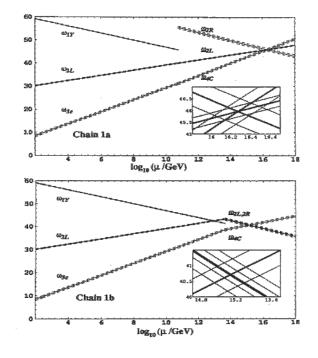
(i) New ansatz to unify diverse profiles of quark and lepton flavor patterns.
(ii) SO(10) GUT with type II seesaw provides a natural framework for realization of this ansatz.
(iii) Predicts measurable θ₁₃ and solves

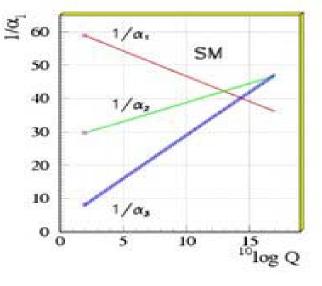
proton decay problem of susy GUTs.

Happy Birthday, Goran !

with seesaw







Simplest example: SUSY SU(5)

☞ The simplest GUT model (circa 1980s)

$$\succ \text{Fermions: } 5 = \begin{pmatrix} d^c \\ d^c \\ d^c \\ \nu \\ e^- \end{pmatrix} \text{ and } 10 = \begin{pmatrix} 0 & u_3^c & -u_2^c & u_1 & d_1 \\ & 0 & u_1^c & u_2 & u_3 \\ & & 0 & u_3 & d_3 \\ & & & e^+ \\ & & & 0 \end{pmatrix}$$

 \succ : Higgs 5 \oplus 5 \oplus 24.

> Predicts: at M_U , $m_b = m_\tau$; very good prediction

Also predicts $m_s = m_{\mu}; m_d = m_e; \text{VERY BAD}$ PREDICTION!!

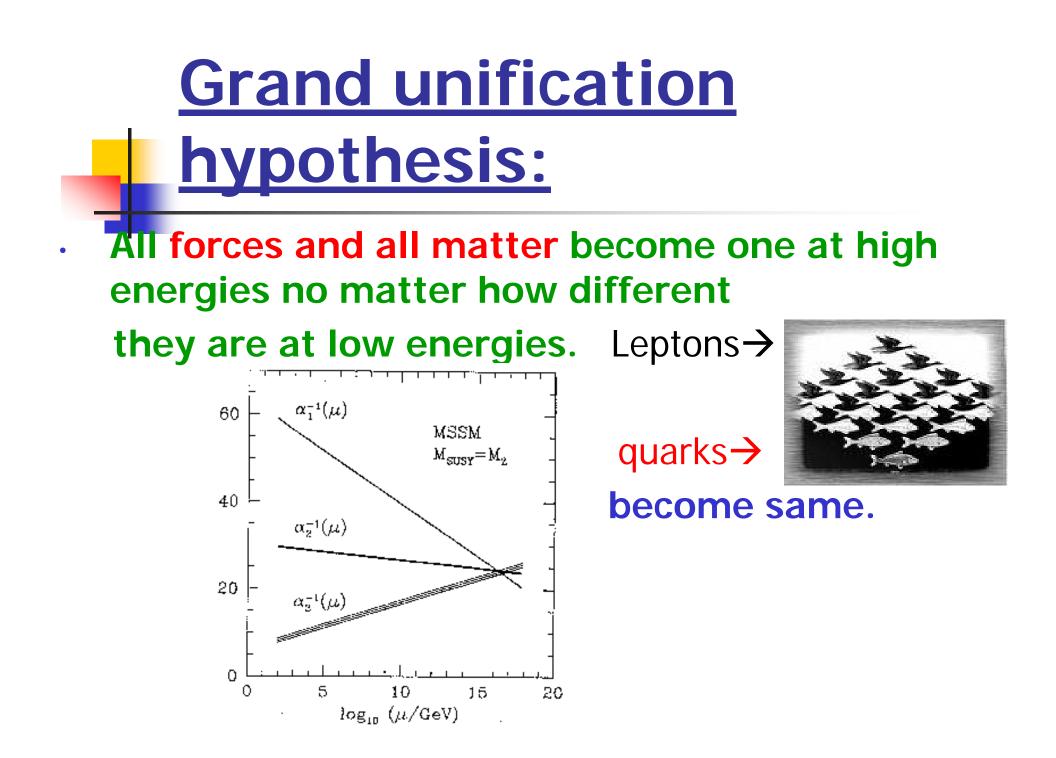
No explanation of neutrino mass:

Why minimal SU(5) not satisfactory

Minimal model ruled out by proton decay !

- Not predictive for neutrinos- so no advantage of GUTs except scale !
- However one nice feature: $\mathcal{M}_b = \mathcal{M}_{\tau}$

A small piece of the flavor puzzle !!



Unified understanding of Flavor in SO(10)

Fermion masses depend on 3 matrices: h, f, h'

$$Y_u = h + r_2 f + r_3 h'$$

$$Y_d = r_1(h+f+h')$$

$$Y_e = r_1(h - 3f + c_e h')$$

$$m_{\nu} \cong f v_{\Delta}$$

Suppose, h >> f and h'=0 and h is anarchic:

• Choose basis so $f = diag(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ with $\varepsilon_{1,2} << \varepsilon_3 << h_{ab}$

Dominant contributions to VCKM cancel out explaining why CKM angles are small VCKM coming from $\mathcal{E}_{1,2,3}$.

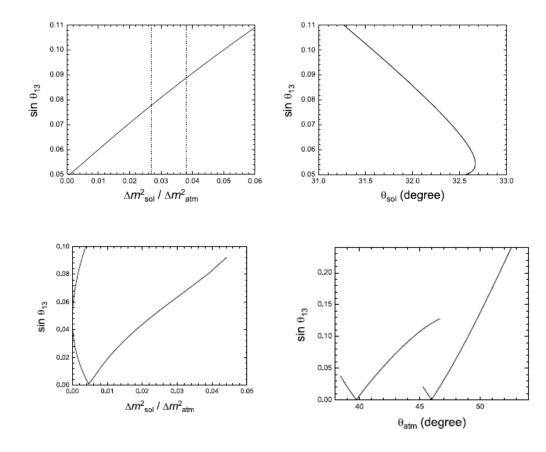
→ large neutrino mixngs come entirely from charged lepton sector; $U_{PMNS} = U_l^+ U_v \equiv U_l^+$ and hence are large!!

Realistic 3-generation model for Flavor:

Our proposal after diagonalization of h
 $h \propto \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ with appropriately rotated f and h'.

Different ansatzes for f and h' lead to different realizations of this idea:

Depends on solar and atm masses:

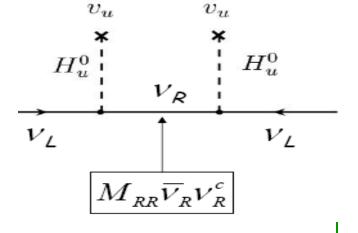


 $\theta_{13} > 0.05$

Why GUT theory for neutrinos ?

- Seesaw paradigm to explain $m_{\nu} << m_{q,l}$
- Add right handed neutrinos N_R to SM with Majorana mass: $L_V = h_V \overline{L} H N_R + M_R NN$
- M_R Breaks B-L : New scale and new physics beyond SM.
- After EWSB

$$m_{\nu} \cong -\frac{h_{\nu}^2 v_{wk}^2}{M_R}$$



-neutrino mass tiny

and neutrino Majorana

Minkowski,Gell-Mann, Ramond, Slansky,Yanagida, Mohapatra, Senjanovic,Glashow

Seesaw scale

- Neutrino masses → seesaw scale much lower than Planck scale → New symmetry (B-L).
- $m_D \approx m_t$ Type I seesaw + Δm_{atm}^2 $\rightarrow M_R \approx 10^{14} GeV$ GUT scale 10^{16} GeV-

-Small neutrino mass strong indication for SUSYGUT;

$$m_D \approx m_e$$

Seesaw scale is around **TeV**

• Accessible at LHC, other signals, $\mu \rightarrow e + \gamma$, $\beta \beta_{0\nu}$

Why Supersymmetry ?

Simple picture of force Unification:

- Predicts correctWeinberg angle
- Candidate for Dark matter

