

Computational and data science research to enable discoveries in fundamental physics

IRIS-HEP is a software institute funded by the National Science Foundation. It aims to develop the state-of-the-art software cyberinfrastructure required for the challenges of data intensive scientific research at the High Luminosity Large Hadron Collider (HL-LHC) at CERN, and other planned HEP experiments of the 2020's. These facilities are discovery machines which aim to understand the fundamental building blocks of nature and their interactions. Full Overview

The IRIS-HEP project was funded on 1 September, 2018, and is ramping up its activities.

IRIS-HEP Steering Board Meeting #7

G. Watts

For the IRIS-HEP Executive Board 2020-09-08

Thank You

Danilo Piparo (CERN) CMS

Paolo Calafiura (LBNL) US ATLAS Ops Program

Simone Campana (CERN) WLCG

James Catmore ATLAS

Oliver Gutsche (FNAL) US CMS Ops Program

Patrick Koppenburg (NIKHEF) LHCb

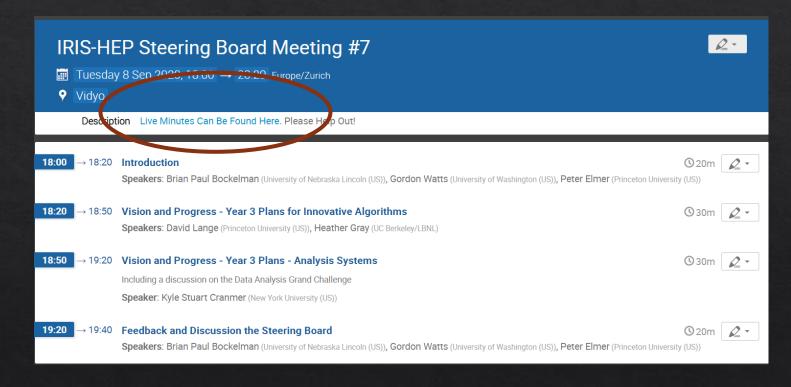
Graeme Stewart (CERN) HSF

Ken Bloom (U. Nebraska-Lincoln) The OSG Council

Welcome

steering-board@iris-hep.org (you)

exec-board@iris-hep.org
(us)


Next Meeting Dates

November 24, 2020 Feb 16, 2021

Early in the new year will fill out 2021 meeting dates after the HSF community calendar is updated

Today

- Year 3 plans
- Y3 Plans from Innovative Algorithms and Analysis Systems
- Discussion

A few highlights

Closing out Year 2

OSG-LHC demonstrated a prototype of an entire GSI-free site and is driving the worldwide transition from GSI/X.509 and GridFTP technologies.

U.S. LHC site (the U.S. CMS Tier-2 at University of Nebraska) has been able partially migrate its production bulk data transfers from GridFTP to HTTP-TPC; approximately 20% of the CMS production traffic to Nebraska is over HTTP.

For the first time in HEP, the full likelihood for an ATLAS search was uploaded to HEPData. This used the pyhf data format and was featured on the CERN homepage

This work also touches on DOMA and WLCG, of course (web tokens, etc.)

Efforts in Analysis Systems to both improve tools used by analyzers and increase ways to preserve physics analyses.

A few highlights

Closing out Year 2

The func_adl language has been integrated into DOMA's ServiceX project and tested on a 9.5 TB ATLAS xAOD sample. It was able to transform the sample in 2 hours into columns suitable for analysis in the python ecosystem. It was run on the UChicago SSL cluster, River. The bottleneck was the ability for an external system to furnish ServiceX with files to transform at a high enough rate.

The LHCb experiment chose the GPU-based Allen framework, to which IRIS-HEP is contributing, for its Run 3 high-level trigger facility.

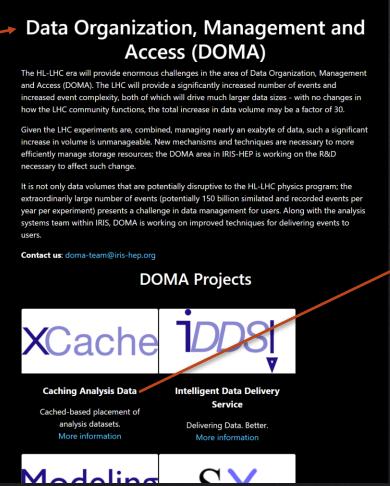
Work with US ATLAS, Analysis Systems, DOMA, and SSL.

A few highlights

Closing out Year 2

The func_adl language has been integrated into DOMA's ServiceX project and tested on a 9.5 TB ATLAS xAOD sample. It was able to transform the sample in 2 hours into columns suitable for analysis in the python ecosystem. It was run on the UChicago SSL cluster, River. The bottleneck was the ability for an external system to furnish ServiceX with files to transform at a high enough rate.

IRIS-HEP collaborators hosted two international workshops on data reconstruction algorithms in HEP: on machine learning approaches to jets (ML4Jets) and on pattern recognition problems including tracking (Connecting the Dots).


Work with US ATLAS, Analysis Systems, DOMA, and SSL.

We have also hosted a number of innovative training and tutorial workshops

Project Information

Per-project information is available on all IRIS-HEP projects.

Caching Analysis Data

ficant portions of LHC analysis use the same datasets, running over each dataset several (via reduced latency) and network (reduce WAN traffic). We are investigating the use of regional caches to store, on-demand, certain datasets. For example, the UCSD CMS Tier-2 and Caltech CMS Tier-2 joined forces to create and mantain a regional cache that benefits all southern California CMS researchers.

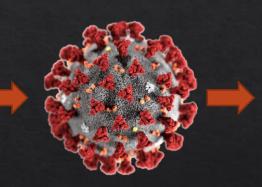
These in-production caches have shown to save up to a factor of three of WAN bandwidth compared with traditional data management techniques.

Presentations

- 23 Apr 2020 "How CMS user jobs use the caches", Edgar Fajardo, XCache DevOps SPECIAL 22 Apr 2020 - "XRootD Transfer Accounting Validation Plan", Diego Davila, S&C Blueprint
- 27 Feb 2020 "XCache", Edgar Fajardo, IRIS-HEP Poster Session
- . 5 Nov 2019 "Creating a content delivery network for general science on the backbone of the Internet using xcaches,", Edgar Fajardo, CHEP 2019
- 5 Nov 2019 "Moving the California distributed CMS xcache from bare metal into containers using Kubernetes", Edgar Fajardo, CHEP 2019
- 12 Sep 2019 "OSG XCache Discussion", Frank Wuerthwein, IRIS-HEP retreat
- 31 Jul 2019 "CMS XCache Monitoring Dashboard", Diego Davila, OSG Area Coord 8 Jul 2019 - "XCache Initiatives and Experiences", Frank Wuerthwein, pre-GDB meeting on

(often, but not always)

G. Watts, IRIS-HEP Steering Board Meeting #7


IRIS-HEP Summer

Blueprint Meeting: Sustainable Software in HEP (~90 registered)

Fellows Program

Normal Fellows Program:

- Goal: graduate students learn new stills from IRIS-HEP R&D
- Room & Board for 2 months
- Travel to an institute university

Class of COIVD-19:

- Goal: undergraduate and graduate students learn new stills from IRIS-HEP R&D
- Mostly located locally or remotely
- No travel, but pay salary
- Was able to support 13
- LHCb PV, LHCb GPU trigger, GNN on FPGAs, pyhf testing, ServiceX testing, compression on nanoAOD, SkyHook testing & Spark interface, OSG Monitoring, ACTS track seeding & fitting & integration, CMS HGCAL CAN fast sim, awkward1 on GPUs, GNN on FPGA's, REANA,
- See <u>fellows page</u>, <u>final presentations</u>.

IRIS-HEP Year 3

Some "dates" of interest

Nov 24, 2020	Steering Board Meeting #8
Feb 16, 2020	Steering Board Meeting #9
Late Feb (?)	NSF Yearly Review
End of April, start of May	Yearly Retreat

We would like to do experiment feedback again.

Other meetings being planned

Review and Y3 Planning

thom Sp#6 Talk

- 1. The NSF 18 Month Review Results
- 2. Focus Area Discussions
- 3. PI Discussions
- 4. US Ops Programs Discussion
- 5. Steering Board Meeting
- 6. Full-Team Retreat
- 7. PEP Draft

- Iterated over by PI's
- Given to the NSF
- Iterate until approved
- Year 3 starts Sept 1, 2020

PEP will be close to final at our next Steering Board Meeting – an obvious topic.

Year 3

1 Now that we have run for 2 years, improve milestones and metrics


Two comments from the IRIS-HEP NSF Review we've spent the summer working on

Grand Challenges to help tie activities at the institute and the US operations programs, and the experiments together.

• Milestones & Metrics

All IRIS-HEP NSF milestones and metrics are public

Type	Time	Description	WBS task	Risks	Metric
M	ongoing	G1.1: Host quarterly Steering Board meetings	1.3		
M	ongoing	G1.2: Community Engagement (topical meetings, news items on website, Letters of support)	1.3		M1.1, M1.4, M1.5
D	ongoing	G1.3: Execute on Quarterly/Annual reporting responsibilities	1.2		
D	ongoing	G1.4: Maintain project staffing	1.2		
M	Y3Q1	G1.5: Organize and execute a Blueprint Workshop on Future Analysis Facilities	1.2, 1.3		
M	Y3Q2	G1.6: Successfully pass IRIS-HEP 30 Month Review			
M	Y3Q3	G1.7: Organize and execute a Blueprint Workshop on FPGA Accelerators	1.2, 1.3		
M	Y3Q3	G1.8: Organize and execute the IRIS-HEP Y3 Institute Retreat	1.2, 1.3		
M	Y3Q4	G1.9: Organize and execute an IRIS- HEP/NSF/DOE Blueprint Workshop	1.2, 1.3		
M	Y3Q4	G1.10: Year 3 IRIS-HEP Fellows Cohort	1.3		
M	Y3Q4	G1.11: Host annual Advisory Panel meeting	1.2		
D	Y3Q4	G1.12: Execute Year 4 subawards	1.1		
M	Y4	G1.13: Blueprint workshops (Grand Challenges Planning & Progress)	1.2, 1.3		
M	Y4Q2	G1.14: Successfully pass IRIS-HEP 42 Month Review			
M	Y4Q3	G1.15: Organize and execute the IRIS-HEP Y4 Institute Retreat	1.2, 1.3		
M	Y4Q4	G1.16: Year 4 IRIS-HEP Fellows Cohort	1.3		
M	Y4Q4	G1.17: Host annual Advisory Panel meeting	1.2		
D	Y4Q4	G1.18: Execute Year 5 subawards	1.1		
M	Y5Q3	G1.19: Organize and execute the IRIS-HEP Y5 Institute Retreat	1.2, 1.3		
M	Y5Q4	G1.20: Year 5 IRIS-HEP Fellows Cohort	1.3		
M	Y5Q4	G1.21: Host annual Advisory Panel meeting	1.2		
M	Y5	G1.22: Blueprint workshops (Grand Challenges Progress)	1.2, 1.3		

Management

Blueprint meeting on Analysis Facilities

DOE/NSF/IRIS-HEP Workshop

Year 4 Milestones

- We've written them to indicate where we are doing
- Will refine as part of the Year 4 processes

DOMA

		T	TTTDG	D. 1	35.
Type	Time	Description	WBS	Risks	Metrics
			task		
M	Y3Q1	G3.1: Second major workflow implemented in iDDS.	W3.1	R3.3	
D	Y3Q2	G3.2: ServiceX can natively send columnar results	W3.1	R3.1,	M.3.1,
		into SkyHook. —		R3.4	M3.2
M	Y3Q2	G3.3: Half of the transfer volume to one LHC site	W3.3	R3.2,	M.3.3
		using HTTP-TPC (US internal transfers only). —		R3.3	
D	Y4Q1	G3.4: iDDS implements a DAOD preprocessing	W3.1	R3.3	
		workflow.			
M	Y4Q1	G3.5: All XCache instances updated to XRootD ver-	W3.5	R3.3	M.3.4
		sion 5 and deployed with non-X509 client auth.			
M	Y4Q2	G3.6: Demonstrate ability to sustain aggregate	W3.3	R3.2	M.3.3
		100Gbps data flows from a source storage using			
		HTTP-TPC.			
M	Y4Q3	G3.7: Deploy SkyHook at an analysis facility at a	W3.2	R3.4	M.3.1
		U.S. LHC site.			
M	Y4Q4	G3.8: ServiceX has a user community of 5 external	W3.1	R3.1	M.3.2
		analysis groups			
D	Y4Q4	G3.9: Demonstrate hardware-accelerated ServiceX	W3.1,	R3.4	
		performance at 30Gbps.	W3.4		
M	Y5Q1	G3.10: One U.S. LHC site retires GridFTP servers.	W3.3	R3.2	M.3.3
M	Y5Q1	G3.11: Demonstrate ability to filter / process data	W3.2	R3.4	M.3.1
		at rate necessary for analysis challenge using Sky-			
		Hook.			
D	Y5Q3	G3.12: Deploy prototype accelerated ServiceX at an	W3.1	R3.4	M.3.2
		analysis facility targeting baseline performance from			
		Year 4.			

- ServiceX and SkyHook integration
- 50% of one site transfers via HTTP
- iDDS and DAOD preprocessing workflow (Y4)

Type	Time	Description	WBS task	Risks	Metric
M	Y3Q1	G5.1: Review of basic carpentry non-HEP curricu-	W5.6	R5.1	M5.6
M	13671	lum, material comprised of software carpentry mod-	VV 5.0	10.1	W15.0
		ules/material taught at the past events			
M	Y3Q1	G5.2: Review of basic carpentry HEP curricu-	W5.6	R5.1	M5.6
IVI	13621	lum material comprised of basic HEP related mod-	W 5.0	165.1	M3.0
		ules/material taught at the past events			
D	Y3Q1	G5.3: Website with carpentry cur-	W5.6		M5.7
D	13621	riculum (HSF Collab). The website	VV 5.0		1010.1
		(https://hepsoftwarefoundation.org/training/curriculum	ım html)		
		is a reference for material for any future related			
		workshop			
M	Y3Q1	G5.4: Data/Software Carpentry outreach work-	W5.1		M5.3
IVI	15621	shops for K-12 Physics teachers in Summer at UPRM	******		M5.5
M	Y3Q2	G5.5: Carpentries based on above curriculum. This	W5.1		M5.7
141	10022	will be a self-guided workshop where a group takes	110.1		10.1
		our material and uses/adds/modifies for their own			
		needs			
M	Y3Q2	G5.6: Evaluate outcome of workshops based on the	W5.3		M5.7
	1000	curriculum by having the workshop organiser take			1.201
		our feedback survey			
M	Y3Q1	G5.7: First Sustainability Blueprint in July to assess	W5.5		M5.1
		and guide future software efforts to include a strong			
		element of sustainability to enable their adaptability			
		to new challenges, longevity and efficiency			
D	Y3Q1	G5.8: Community of instructors	W5.2		M5.5
		https://hepsoftwarefoundation.org/training/communi	tv.html		
M	Y3Q1	G5.9: Programming Outreach Workshop in Decem-	W5.1		M5.3
		ber 2020 on using google colab and CMS Data			M5.5
D	Y3Q2	G5.10: Review of Software Material for Program-	W5.6	R5.1	M5.6
		ming Outreach, the material used couple of times			
		would be reviewed based on survey and feedback			
		from teachers who attend			
M	Y3Q2	G5.11: Programming Outreach Workshops based on	W5.1		M5.3
		reviewed material in Fall of 2020			M5.5
M	Y3Q4	G5.12: Second Training Blueprint workshop to as-	W5.5		M5.1
		sess the success of workshops based off of our basic			
		training material, lessons learnt and focus on chal-			
		lenges, plan and design of HEP domain specific train-			
		ing topics			
M	Y3Q4	G5.13: Brainstorming session with experts, fellows	W5.3		M5.1
		to revisit software and data challenges and corre-			
		spondingly design future training material and work-			
		shops and domain specific topics			
M	Y3Q4	G5.14: Organize and run CoDaS-HEP School (Par-	W5.1	R5.2	M5.2
		allel Programming, ML, Big Data Tools) at Prince-			M 5.4
		ton with experts and trained fellows			

SSC

Improve the existing workshops with feedback, latest techniques

Using Google Collab and CMS Data – Training Workshop

SSL

Type	Time	Description	WBS	Risks	Metrics
			task		
D	Y3Q1	G6.1: Split River cluster into model and develop-	W6.1		
		ment environments			
M, D	Y3Q2	G6.2: Establish a second SSL site	W6.3	R6.1	M6.1
D	Y3Q3	G6.3: Provision user training environments with	W6.4	R6.2	M6.2
		federated ID, job submission, interactive notebooks			
D	Y4Q2	G6.4: Provide federated scheduling of SSL clusters	W6.1,	R6.2	M6.3
		_	W6.2,		
			W6.3		
D	Y3Q4	G6.5: If cost/benefit relative to accelerated ServiceX	W6.5	R6.3	
		on cluster baseline indicates, build prototype system			
		and benchmark its performance			
D	Y4Q3	G6.6: Coordinate with AS, DOMA, and operations	W6.1,	(R2.2)	(M2.2)
		programs to benchmark performance of prototype	W6.3	`	` ′
		system components to be used for Analysis Grand			
		Challenge.			
D	Y5Q2	G6.7: Coordinate with AS, DOMA, and operations	W6.3		(M2.2)
		programs to execute the Analysis Grand Challenge			` ′

Establish second SSL site

Federation of SSL sites

OSG

Type	Time	Description	WBS	Risks	Metrics
			task		
D	Y3Q1	G7.1: Have at least 1 U.S. site each for ATLAS and CMS	W7.2	R7.5,	M.7.14
		in a 100 Gbps perfSONAR mesh		R7.6	
D	Y3Q4	G7.2: Define IRIS-HEP's role in networking for data	W7.2,	R7.7	_
		challenge	W7.5		
M	Y3Q2	G7.3: OSG 3.6.0 is released	W7.2,	R7.4,	M.7.5,
			W7.4	R7.6,	M.7.7,
				R7.7	M.7.8,
					M.7.10
D	Y5Q1	G7.4: End support for the OSG 3.5 release series	W7.2,	R7.4,	M.7.5,
		_	W7.4	R7.5,	M.7.10
				R7.6	
D	Y4Q2	G7.5: Have at least 5 instances of refactored XRootD	W7.2,	R7.5,	M.7.3
		monitoring in production use	W7.5	R7.6,	
				R7.7	
D	Y4Q2	G7.6: Complete the SDLC from engagement to produc-	W7.2	R7.4,	M.7.5,
		tion deployment for one IRIS-HEP software product		R7.5,	M.7.8
				R7.6	
D	Y5Q2	G7.7: Have one example of an IRIS-HEP-supported ser-	W7.2,	R7.5,	M.7.4,
		vice in production using the new container paradigm	W7.5	R7.6	M.7.6

Data Processing Challenge

OSG 3.5 -> 3.6

Grand Challenges

Review Committee: Global challenges to knit together disparate parts of the institute

- Demonstrate useful work for the LHC Run 4 Era
- Force building of tools for longer-term than just the challenge
- Span more than one area of the institute
- Have stakeholder participation
- Fine to span multiple years (encouraged)

Analysis Grand Challenge

In today's Analysis Systems Talks

Data Processing Grand Challenge

Next Steering Board Meeting

NSF: <u>IAIFI</u>

The NSF AI Institute for Artificial Intelligence and Fundamental Interactions (IAIFI)

- Two members of IRIS-HEP are founding members of IAIFI
- As they spin-up we will look for points of collaboration

Questions? Comments?

