PRR of the NSW Trigger Processor

Micromegas: L1A and readout (thru carrier). Algorithms and time alignment.

Nathan Felt

With everyone in the TP group PRR of the NSW Trigger Processor 2020 May 06

Overview / Data Paths

- FELIX Communication via RTM
 - SCAX configuration, Register R/W
 - BC clock recovery at carrier
 - TTC received / distributed at carrier
 - L1A and Monitoring packets
- Front panel fiber detector data
- MM track segment lateral transfer to sTGC for merging

BB5 MM Commissioning

- FELIX Communication via RTM
 - SCAX configuration, Register R/W
 - BC clock recovery at carrier
 - TTC received / distributed at carrier
 - L1A and Monitoring packets
- Front panel fiber detector data
- Full sector MMTP algorithm

BB5 MM Commissioning

BB5 ART path connectivity tests using L1A packets

- Sector A14
- All VMMs on entire sector independently pulsed synchronous to L1A
- Raw ART data taken from L1A packets
 - Data in plot read out through front panel fibers
 - Have since started using eLinks through the carrier
- Packets recorded with the swROD to disk.
- All VMMs on sector are accounted for in L1A packet data

L1A Packet Builder Firmware update

- Key improvements
 - Handling of multiple L1A's in a readout window (parameterized)
 - Event Count Reset is available
- Currently being tested at the "Massachusetts" test stand.

Massachusetts NSW Hardware Remote Testing

- ADDC Emulator is now standalone and can be run on a different Mezz / carrier
- eLinks from 1 FELIX fiber is shared between two Mezz FPGAs
 - Second FELIX fiber has been implemented and currently being tested
- 36 front panel fibers between FPGAs
- Currently transitioning the MMTP playback tests to use the NSWConfiguration Software
 - Firmware development
 - Production board testing
- Remote testing hardware has been working well

Massachusetts NSW Hardware Remote Testing

Lateral Transfer of MM Segments to sTGC FPGA

- Initial testing of interface using pattern data Tx in MMTP
- Further pattern data testing on the sTGC side by George Chatzianastasiou
- With access to hardware, we can test using coordinated playback testing with emulated detector data on the front panel fibers

Lateral Transfer of MM Segments to sTGC FPGA

- Data transfer on 16 x 640 MS/s LVDS up to 8 segments / BC
- The data bus is delayed by the receiver such that the center of the data eye is aligned with the sTGC 320MHz clock. No Clock Domain Crossing.
- The receiver continuously looks for data errors and can adjust the delay.
 - Two independent idelays per signal

ADDC ART Data Fiber Alignment

- ADDC Fibers are aligned using two 40 MHz pipeline stages phase locked with the BC clock
 - The first stage is the Clock Domain Crossing automatically set by the TP to latch the data within the "aligned" window
 - The second is a manual setting to provide a fixed latency
- For details of the ART ASIC alignment and calibration please refer to Alex Tuna's recently presented talk <u>Calibrating ART</u>

Current MMTP Placement

- 65% LUT resource usage
 - congestion / latency requirement is the real limiting factor
- TP algorithm updated to accommodate detector cabling
 - Previous version minimizes the front end electronics needed to produce a coincidence trigger
 - Much more difficult placement
 - Impact on timing
- Interactive physical optimization used to re run the Vivado place after initial physical optimization
 - Second place step now knows about replication
- Full design still has ~ -100ps WNS that is expected to be solved with better placement constraints ... and a pipeline stage if necessary

Power Requirement (Measured)

- Carrier board and RTM power consumption: 41.73 W
- Mezzanine power consumption: 11.13 W
- Sector FPGA power consumption: 1.39 W
- Mezzanine FPGA power consumption, μPod included: 25.04 W
- Estimated total power consumption: 166.92 W

Micromegas Trigger Processor Latency

- The latency from VMM output to Trigger Processor track segment coincidence trigger (finder) have been measured during a hardware integration workshop.
- Timing measurements for the Micromegas track segment fitter components and segment lateral transfer are taken from behavioral simulations.
- At a latency of 904 ns, the MM segments will arrive at the sTGC merge block before the sTGC segments, 959ns.
 - This estimate assumes a three bunch crossing hit integration window.
 - Studies suggest the hit integration window will need to be increased to four or more bunch crossings.
 - Each additional bunch crossing will increase the latency by 25ns.

MMTP Firmware ToDo List

- Resolving the last -100ps WNS
- MM Finder algorithm duplicate track removal
- Track fit parameter adjustment
- Testing recently added features
 - Multiple L1A's in a readout window
 - ADC fiber clock phase auto align
 - Adding new data types to the L1A / Monitoring packets
 - Automatically suppressing hot VMM channels
- Firmware and bug fixes needed for the commissioning effort

"Backup" slides

MM Trigger Processor Algorithm

MM to sTGC segment transfer

- Collects up to 8 MM segments from MMTP algorithm regions each BC
- Segments transferred to the sTGC FPGA using 16x 640 Mb/s LVDS signals
- The segment receiver in the sTGC FPGA uses independently delayed versions of the same signal
 - Set the sampling point to the center of the data eye
 - Check for errors
 - Provide segment data to the sTGC logic that will be aligned to the sTGC clock with no additional clock domain crossing necessary.

MMTP Clock Network and ADDC Alignment

Link aligner uses two 320Mhz pipeline stages to selectively delay fiber data and align data from 32 ADDCs

Hardware Implementations

- VC707 development board implementation
 - 1/8 th wedge algorithm slice.
 - Python/UDP DAQ.
 - Algorithm evaluation
 - in a cosmic ray test stand and documented in ATL-COM-MUON-2018-003 https://cds.cern.ch/record/2302523 (Alex, Ann, Paolo)
 - Test-beam (Alex, Ann)
- HORX implementation
 - Full wedge algorithm.
 - Tcl/JTAG DAQ Transitioning to a FELIX based DAQ
 - Tested using
 - internally generated ART data that is sent through a loopback fiber.
 - CERN vertical slice ART data chain.

CERN Vertical Slice ART Data Chain

- HORX clock recovered from FELIX in MMTP
- Configuration / Monitoring via FELIX / SCX
- MMTP synchronization using TTC Bunch Crossing Reset and L1A signals via FELIX
- ART data chain
 - o 8 MMFE8
 - o 2 ADDC
- Track candidates from pulsed VMMs collected from Trigger Processor using the FELIX / monitoring functionality
- Latency measurement in past VS from VMM ART flag to coincidence trigger matches calculated estimate.
 - Total latency event to sector logic input 1026ns with a 4 BC window

MM Remaining Tasks

- Finder track duplicate removal
 - Include ART Data in monitoring data path
- Monitoring / L1A data path implementations are currently being tested on hardware using ½ wedge algorithm implementation. This needs to be scaled up to the full algorithm implementation
 - Implementation size is a selectable parameter but may need some pipelining and placement constraints to meet timing requirements
- GBT ART data packet alignment to account for different fiber lengths
- Alignment correction for rotation and twist
- Mapping GBT data to match ADDC to MMFE8 cabling
 - Current mapping MMFE8s in Z to minimize number of ADDCs needed to produce a trigger
- Adjusting fit parameters to accommodate "diamond" finder algorithm

MM Current Loopback Hardware

- JTAG AXI interface used for FPGA DAQ communication
- Python, Tcl, Matlab used for data formatting, DAQ, and verification
- ADDC ART data loaded into FIFO
- Receives loopback fiber as if sent from ADDC
- Option to bypass transceiver inside FPGA

MM Loopback Data Sources

- Athena generated with no background hits
 - Athena hits are formatted into an ADDC ART data packet
- Hits collected from cosmic ray test stand
 - Each coincidence trigger will store a window of raw GBT data
 - Raw GBT data is used to "replay" an event in simulation or hardware
- Pattern data to emulate tracks anywhere on the detector
 - GBT Packets are generated using a Python script
 - Hit strips from track candidates are histogrammed, problems become easy to spot.
 - Currently testing the full wedge implementation with pattern data
- Firmware simulations and hardware tests use same hit data source.

Example Pattern Data

- Tracks with the same slopes for X,U, and V planes (scanning up the center)
- Tracks with the same X plane slopes but offset UV plane slopes (scanning across)

ADDC Interface testing

- 36 front panel transceivers have been IBERT tested
- Full MMTP algorithm using 32 fibers has been tested
 - Loopback fibers
 - Data Tx Rx in same FPGA
 - Limited statistics

Integrated in vertical slice with 2 ADDCs (4 fibers) and ART data from pulsed

MMFE8s

o FELIX clock recovery implemented in MMTP FPGA

