H→WW measurements with the CMS experiment

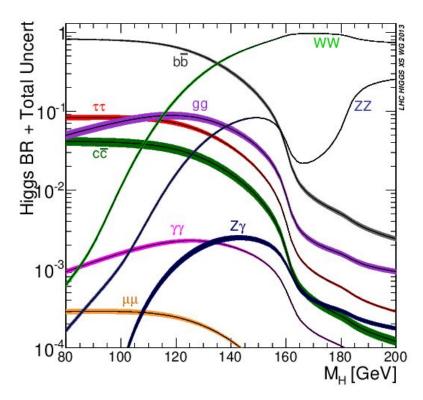
Adrián Álvarez Fernández (CIEMAT) Jónatan Piedra (IFCA)

4th Red LHC Workshop, November 4th

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

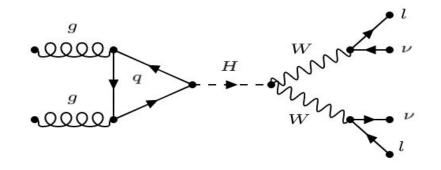
Content of this talk

- First measurement of Higgs properties in the $H \rightarrow WW \rightarrow |v|v$ channel at $\sqrt{s}=13$ TeV. [1]
- Run 2 differential cross section measurement with respect to the Higgs boson transverse momentum and the jet multiplicity using 137 fb⁻¹ of collected data. [2]
- Ongoing analysis with full Run 2 data.


[1] "Measurements of properties of the Higgs boson decaying to a W boson pair in pp collisions at $\sqrt{s}=13$ TeV". In: Physics Letters B 791 (2019), pp. 96–129. issn: 0370-2693. arxiv.1806.05246

[2] "Measurement of the inclusive and differential Higgs boson production cross sections in the leptonic WW decay mode at $\sqrt{s} = 13 \text{ TeV}$ ". <u>arxiv.2007.01984</u>

Introduction

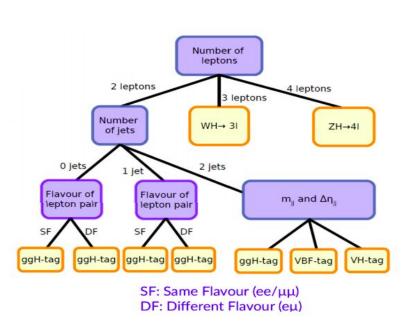

- Higgs boson decay into a pair of W bosons has one of the highest branching ratios at m_⊥=125 GeV.
- Fully leptonic decay (H→WW→lvlv) has a clean signal from the isolated leptons that allows the study of the Higgs boson in a variety of production modes.
- Good signal sensitivity despite the large background, but low resolution due to neutrinos in the final state.
- Signal strength modifiers and Higgs boson couplings have been studied with 2016 data and now we are exploiting the full Run 2.

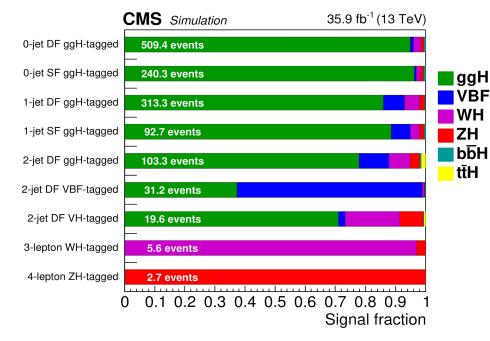
HWW event description

CMS

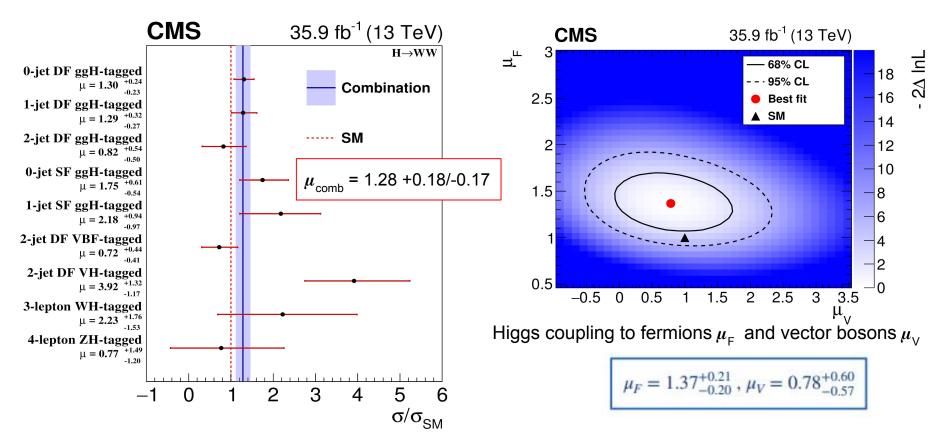
- Final state with two leptons (e or μ) and missing energy from the two W bosons.
- Categories with same or different flavour leptons.
 - ggH categories
 - VBF categories (two separated jets)
 - VH categories (2 jets or 3 or 4 leptons)

- Main backgrounds:
 - Nonresonant WW production
 - \circ DY ($\tau\tau$ for different-flavour leptons)
 - Top quark production (tW and ttbar)
 - Nonprompt lepton background
 - Misidentified leptons or leptons from heavy-flavor hadron decays
 - Mainly W+jets and ttbar events
 - Validated with a control region of same-sign leptons


Dedicated control regions are used


to estimate these two backgrounds

First measurement of HWW with Run 2 data


- ggH, VBF and VH production modes.
- Categories according to number of jets and same/different flavour leptons.

Higgs signal strength multipliers and couplings

Fiducial and differential measurements

- Differential cross sections are measured in bins of some observables.
- > Fiducial measurements extrapolate to a phase space that matches the experimental selections.
 - o Reduce model dependence avoiding the extrapolation to the full phase space.
- > We can extract more information from fiducial differential cross sections:
 - Testing SM predictions.
 - o Performing measurements in phase spaces more sensitive to BSM effects.
- We use the Higgs boson transverse momentum and the jet multiplicity as observables.
 - p_T^H is a particularly interesting choice, since the SM d_σ/dp_T^H is computed up to NNLO in QCD and it is known to be sensitive to possible deviations from the SM.
 - Jet multiplicity depends on the relative contribution of the production mechanisms and is useful to probe perturbative QCD radiation effects.

Analysis strategy

Gluon fusion channel is the one with the highest cross section and sensitivity.

Candidate events passing the ggH different-flavour selection are classified according to p_T^H and N_{iet}:

- p_T^H is computed using the sum of the p_T of the two leptons and the p_T^{miss} .
- For N_{iet} , only jets with $p_T > 30$ GeV and $|\eta| < 4.7$ are considered.

Two variables, dilepton invariant mass m_{\parallel} and the transverse mass of the Higgs boson $m_{T}^{\ H}$, have strong discrimination power against the background processes. The transverse mass is defined as:

$$m_{\mathrm{T}}^{\mathrm{H}} = \sqrt{2p_{\mathrm{T}}^{\ell\ell}p_{\mathrm{T}}^{\mathrm{miss}}\left[1-\cos\Delta\phi(\vec{p}_{\mathrm{T}}^{\ell\ell},\vec{p}_{\mathrm{T}}^{\mathrm{miss}})\right]},$$

 In each category the signal is extracted from fits to this two-dimensional distribution, using a combination of the background and signal templates.

Event selection

General selection:

- μ and e with opposite charge
- $p_{T_1} > 25 \text{ GeV}, |\eta_1| < 2.5$
- \circ p_{T2} >13 GeV, $|\eta_2|$ <2.5
- Third lepton veto (p_{T3} < 10 GeV)
- Missing E_{τ} >20 GeV

ggH signal region:

- $\begin{array}{ll} \circ & \text{m}_{\text{II}} > 12 \text{ GeV} \\ \circ & \text{m}_{\text{T}}^{\text{ H}} > 60 \text{ GeV, } \text{m}_{\text{T}}^{\text{ I2}} > 30 \text{ GeV} \end{array}$
- o no b-tagged jets with p_⊤ >20 GeV

with
$$m_T^{l2} = \sqrt{2p_T^{\ell_2}p_T^{miss}\left[1 - \cos\Delta\phi(\vec{p}_T^{\ell_2}, \vec{p}_T^{miss})\right]}$$

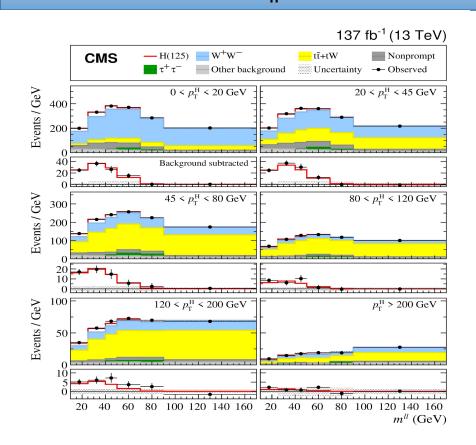
The <u>fiducial region</u> is defined using the general selection + signal region criteria

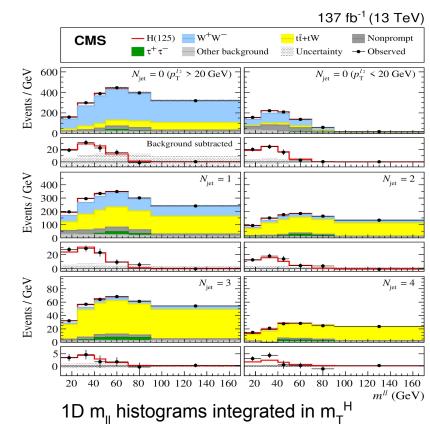
Additionally, two control regions are defined to constrain background contributions:

- Top quark control region:
 - \circ m_T¹² >30 GeV , m_{II} >50 GeV
 - 1 b-tagged jet with p₊ >30 GeV $(p_{\tau} > 20 \text{ GeV in the 0-jet categories})$
- DY $\rightarrow \tau\tau$ control region:
 - m_{_}^H <60 GeV , 40 GeV <m_{||} <80 GeV
 - no b-tagged jets with p_⊤ >20 GeV

Analysis categories

To maximize the sensitivity to the signal, events in each bin of the basis observables p_T^H and N_{jet} are further categorized by the properties of the two lepton candidates:


- $e\mu / \mu e$, depending on the leading lepton \rightarrow to further isolate nonprompt lepton background
- $p_{T2} \ge 20 \text{ GeV} / p_{T2} < 20 \text{ GeV}$ \rightarrow low p_{T2} region has higher signal/background ratio


Bins with lower number of events are not split into 4, but into 3 (no flavour division at $p_{T2} \ge 20$ GeV), 2 (no division in flavour) or 1 (no splitting) instead:

p _T ^H (GeV)	0-20	20-45	45-80	80-120	120-200	>200
categories	4	4	4	3	2	2
Njet	0	1	2	3	≥4	
categories	4	4	2	1	1	

Signal region m_{II} distributions

Unfolding and regularization

- Signal events from <u>one generator-level bin</u> (i) <u>contribute to multiple reconstructed-level bins</u> in the $m_{_{||}}$: $m_{_{||}}$ templates, which are all scaled together by the <u>same signal strength multiplier</u> $\mu_{_{||}}$.
- By performing one simultaneous maximum likelihood fit over all reconstructed-level bin histograms, signal strength modifiers of the generator-level observable bins can be determined.
- The unfolding procedure can be highly sensitive to statistical fluctuations in the observed distributions, and for the p_T^H measurement there are large migrations due to poor p_T^{miss} resolution.
 - To mitigate this effect, a regularization procedure is introduced to obtain the final result.
 - This regularization term acts as a smoothing constraint, reducing unphysical anticorrelations.

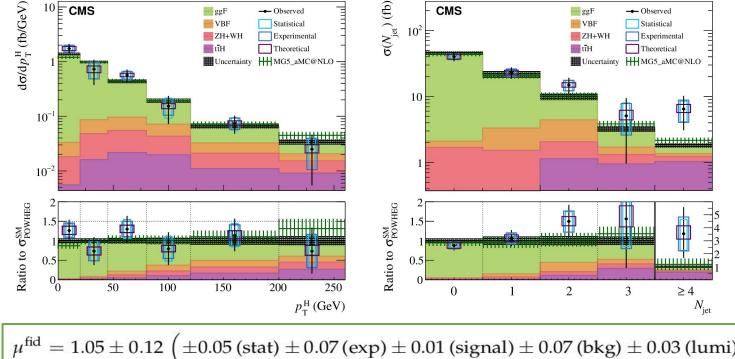
Uncertainties

Sources of experimental uncertainties:

- Integrated luminosity
- Trigger efficiency
- Lepton reconstruction and identification efficiencies (1-2%)
- Lepton momentum scale
- Jet energy scale
- E_T^{miss} scale (1-10%)
- b-tagging
- Pile-up reweighting

Sources of theoretical uncertainties:

- PDF
- Renormalization and factorization scale
- Parton shower modeling
- Underlying event modeling


Sources of uncertainties in the background modeling:

- Control region/ signal region for top quark and DY
- Top quark p_T reweighting
- Single top / ttbar cross section ratio
- WW NNLL resummation
- Nonprompt lepton background estimation (5–10%)
- WZ and Wy* scale factors

Fiducial differential cross section results

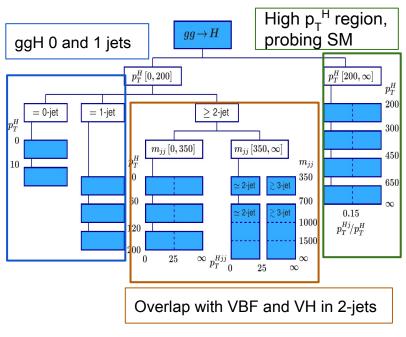
137 fb⁻¹ (13 TeV)

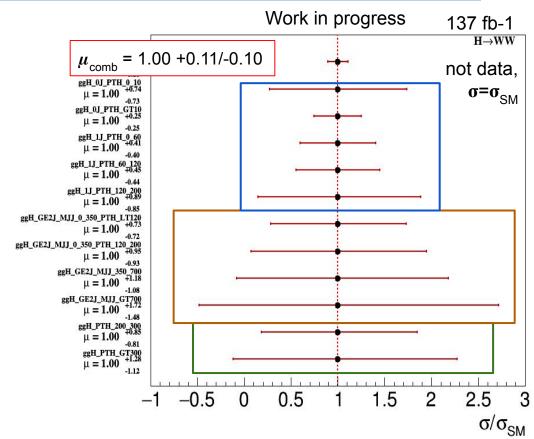
Good agreement with theoretical predictions

1.4 σ is the largest deviation, in the \geq 4 jet bin

$$\mu^{\rm fid} = 1.05 \pm 0.12 \ \left(\pm 0.05 \ ({\rm stat}) \pm 0.07 \ ({\rm exp}) \pm 0.01 \ ({\rm signal}) \pm 0.07 \ ({\rm bkg}) \pm 0.03 \ ({\rm lumi}) \right)$$
 $\sigma^{\rm fid} = 86.5 \pm 9.5 \ {\rm fb}.$
 $\sigma^{\rm SM} = 82.5 \pm 4.2 \ {\rm fb}$

137 fb⁻¹ (13 TeV)


Next results in SM H→WW analyses in CMS

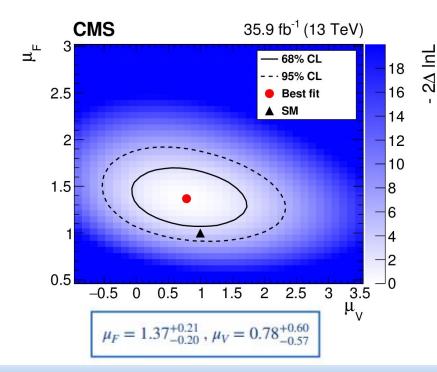

- The H→WW→lvlv group is currently in the latest stages of analyzing the full Run 2 data.
- One new result will be the measurement of stage 1.2 Simplified Template Cross Sections (STXS).
 - Measurement performed in phase space regions, with same definition in CMS and ATLAS.
 - Complementary measurements with respect to differential analyses.
 - Reduce theory uncertainties while maximizing the sensitivity of the analysis.
 - o Binning schemes for each production mode, defined in stages of increasing granularity.
 - \circ Allows combination between analyses using different decay modes (e.g. ZZ, $\chi\chi$, $\tau\tau$, WW).

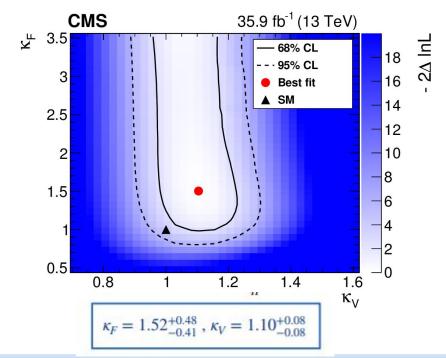
STXS expected signal strength uncertainties (ggH)

- Uncertainties of the order of 10% for the combination of the bins.
- For regions with uncertainties over 100%, (low statistics) bins can be merged.

Summary and conclusions

- After the first measurement at 13 TeV of Higgs signal strength multipliers and couplings, the SM H →WW group of CMS has produced a fiducial differential measurement using 137 fb⁻¹ of data.
 - Differential measurement with respect to p_T^H and N_{iet}.
 - Events selected targeting the gluon fusion production mode.
 - Final state with two different-flavour leptons and missing energy.
 - Cross section obtained in agreement with the SM theoretical prediction.
- Work in progress: full Run 2 measurements of the ggH, VBF and VH production modes.
 - New results will include a measurement with a divided phase space, using the Simplified Template Cross Section framework.




Backup

Higgs couplings in first Run 2 measurement of HWW

kappa framework:
$$\sigma \mathcal{B}(X \to H \to WW) = \kappa_i^2 \frac{\kappa_V^2}{\kappa_H} \sigma_{\text{SM}} \mathcal{B}_{\text{SM}}(X \to H \to WW)$$

Signal extraction

Higgs differential production cross sections are inferred from signal strength modifiers $\mu_i = \sigma_i^{\rm obs}/\sigma_i^{\rm SM}$ extracted from a simultaneous maximum likelihood fit to all bins and categories.

This is the likelihood function:

$$\mathcal{L}(\mu; \theta) = \prod_{j} \operatorname{Poisson} \left(n_j; s_j(\mu; \theta) + b_j(\theta) \right) \cdot \mathcal{N}(\theta) \cdot \mathcal{K}(\mu)$$

$$\underset{(m_{\parallel} \text{ and } m_{\top}^H \text{ bin})}{\wedge} \operatorname{constraints on the systematic}$$

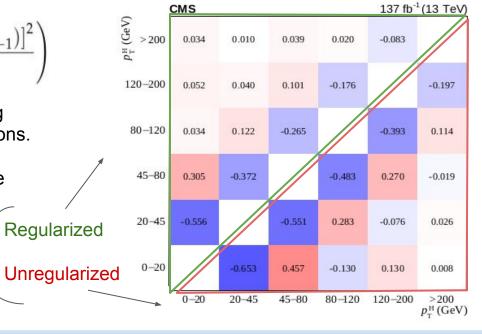
$$\underset{(m_{\parallel} \text{ and } m_{\top}^H \text{ bin})}{\operatorname{constraints on the systematic}} \operatorname{uncertainties, taken as nuisance}$$

$$\underset{(m_{\parallel} \text{ and } m_{\top}^H \text{ bin})}{\operatorname{regularization factor that reduces large}} \operatorname{fluctuations among neighboring bins applied only in } p_{\top}^H \text{ measurement}}$$

$$s_j(\mu; \theta) = \sum_i \left[R_{ji}(\theta) \mu_i L_j \cdot (\sigma_i^{\text{SM}} + \sigma_i^{\text{SM-out}}) \right]$$

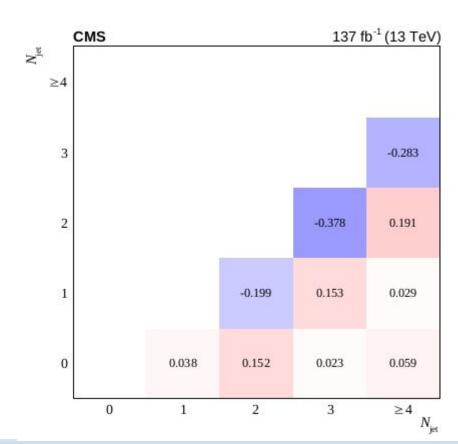
$$\underset{(\text{response matrix})}{\wedge} \operatorname{luminosity} \operatorname{fiducial} \operatorname{nonfiducial} \operatorname{cross section}$$

Regularization procedure



- The unfolding procedure can be highly sensitive to statistical fluctuations in the observed distributions, and for the p_T^H measurement there are large migrations due to poor p_T^{miss} resolution.
- To mitigate this effect, a regularization procedure is introduced to obtain the final result.

$$\mathcal{K}(\mu) = \prod_{i=2}^{N-1} \exp\left(\frac{-\left[(\mu_{i+1} - \mu_i) - (\mu_i - \mu_{i-1})\right]^2}{2\delta^2}\right)$$


- This regularization term acts as a smoothing constraint, reducing unphysical anticorrelations.
- δ is optimized by minimizing the mean of the global correlation coefficient.

Correlation among the signal strength modifiers for p_T^H bins

Correlation matrix among Njet bins

Table of yields

Table 5: Signal and background post-fit (pre-fit) yields in the \mathcal{RL} $p_{\mathrm{T}}^{\mathrm{H}}$ bins.

D	$\mathcal{RL} p_{T}^{H}$ bin							
Process	[0-20]	[20-45]	[45-80]	[80-120]	[120-200]	> 200		
H(125)	$1489 \pm 81 \ (1356)$	$1386 \pm 80 (1402)$	$835 \pm 52 (792)$	$320 \pm 36 (344)$	217 ± 33 (222)	$54 \pm 17 (75)$		
$ au^+ au^-$	$537 \pm 49 (372)$	$675 \pm 43 (585)$	$684 \pm 61 (482)$	$316 \pm 42 (195)$	$173 \pm 24 (219)$	$104 \pm 58 (83)$		
W^+W^-	$26945 \pm 213 (22840)$	$17421 \pm 290 \ (18771)$	$7444 \pm 269 \ (9048)$	$2759 \pm 250 (3972)$	2205 ± 155 (2816)	$1037 \pm 70 (1637)$		
$t\overline{t} + tW$	$5571 \pm 65 (5492)$	$14700 \pm 176 (14528)$	$18313 \pm 239 \ (18188)$	$11482 \pm 220 \ (11624)$	$6481 \pm 137 (6488)$	$1659 \pm 40 (1671)$		
Nonprompt	$3709 \pm 127 (5154)$	$4373 \pm 128 (5909)$	$1822 \pm 107 (3143)$	$1002 \pm 80 \ (1239)$	$558 \pm 52 (749)$	$197 \pm 23 (279)$		
Other background	$2770 \pm 102 (2002)$	$3245 \pm 137 (2186)$	$2160 \pm 100 (1431)$	$1055 \pm 64 (778)$	$737 \pm 49 (519)$	$478 \pm 33 (349)$		

Table 6: Signal and background post-fit (pre-fit) yields in the \mathcal{RL} N_{jet} bins.

Process	$\mathcal{RL}\ N_{\mathrm{iet}}\ \mathrm{bin}$							
1 locess	0	1	2	3	≥ 4			
H(125)	$2186 \pm 92 (2447)$	$1254 \pm 60 (1165)$	$632 \pm 66 (445)$	$178 \pm 48 (109)$	$98 \pm 26 (36)$			
$ au^+ au^-$	$740 \pm 41 (520)$	$944 \pm 50 \ (822)$	$688 \pm 99 (301)$	$255 \pm 43 (135)$	$100 \pm 50 (70)$			
W^+W^-	$41058 \pm 360 (38437)$	$13190 \pm 252 (15176)$	$3402 \pm 222 (4266)$	$698 \pm 125 (966)$	0 ± 0 (240)			
$t\bar{t} + tW$	$11125 \pm 144 (11870)$	$20891 \pm 179 (21198)$	$15788 \pm 214 (15381)$	$6853 \pm 110 (6510)$	$3152 \pm 52 (3031)$ top			
Nonprompt	$6649 \pm 188 (8999)$	$3436 \pm 149 (4457)$	$1066 \pm 77 (1792)$	$480 \pm 52 (685)$	$254 \pm 30 (357)$			
Other background	$4513 \pm 165 (3394)$	$3189 \pm 139 (2342)$	$1424 \pm 89 (1043)$	$449 \pm 32 (362)$	$149 \pm 12 (124)$			

Fiducial differential cross section results

 $H_{\mathbf{u}}$

 σ SM

 σ obs

p_{T}^{n}	σ^{α}		\sim Regularized μ					Bias	σ^{oos}
(GeV)	(fb) μ	Value	stat	exp	signal	bkg	lumi	Dias	(fb)
0–20	$27.45 1.37 \pm 0.$	$30 1.26 \pm 0.27$	±0.17	± 0.19	± 0.01	± 0.10	± 0.03	+0.00	34.6 ± 7.5
20–45	$24.76 0.52 \pm 0.$	0.73 ± 0.36	± 0.24	± 0.25	± 0.01	± 0.10	± 0.03	-0.12	18.2 ± 8.9
45-80	15.28 1.55 ± 0.4	$.41 \mid 1.30 \pm 0.33 \mid$	± 0.24	± 0.20	± 0.03	± 0.09	± 0.03	-0.03	19.9 ± 5.2
80-120	7.72 $0.49 \pm 0.$	0.79 ± 0.42	± 0.32	± 0.25	± 0.02	± 0.08	± 0.03	-0.16	6.1 ± 3.3
120-200	$5.26 1.34^{+0.5}_{-0.4}$	$\begin{bmatrix} 51 \\ 48 \end{bmatrix} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	±0.29	± 0.27	± 0.04	± 0.08	± 0.03	+0.11	6.0 ± 2.2
>200	$2.05 0.64^{+0.6}_{-0.6}$	$\begin{array}{c c} 63 & 0.73^{+0.61}_{-0.57} \end{array}$	± 0.38	± 0.42	$+0.09 \\ -0.03$	± 0.10	± 0.03	+0.19	1.5 ± 1.2
NI.	σ^{SM}		μ					$\sigma^{ m obs}$	
$N_{ m jet}$	(fb) Valu	ue stat	exp	signal	bkg	lum	i	(fb)	
0	$45.70 0.88 \pm 1$	0.13 ± 0.06	± 0.08	± 0.01	±0.07	7 ± 0.0	03 40.	1 ± 6.0	
1	$21.74 \mid 1.06 \pm 1$	$0.20 \mid \pm 0.12$	± 0.14	± 0.01	± 0.08	± 0.0)3 23.	0.0 ± 4.6	
2	9.99 1.50 ± 6	0.40 $^{+0.25}_{-0.28}$	± 0.28	± 0.04	± 0.11	± 0.0)3 15.	0.0 ± 4.2	
3	$3.26 1.56^{+3}$		$+0.84 \\ -0.76$	$+0.17 \\ -0.07$	$+0.29 \\ -0.19$	$^{+0.0}_{-0.0}$	$\begin{bmatrix} 7 & & 5 \end{bmatrix}$	$5.1^{+4.4}_{-4.1}$	
≥ 4	1.83 3.54^{+2}_{-3}	$\begin{array}{c cccc} -2.05 & +1.10 \\ -1.86 & -1.28 \end{array}$	$+1.28 \\ -1.32$	$+0.40 \\ -0.20$	$+0.38 \\ -0.34$	+0.1		$0.5^{+3.8}_{-3.4}$	
		$\begin{array}{c c} -1.35 & +0.89 \\ -1.26 & -0.71 \end{array}$	$+0.84 \\ -0.76 \\ +1.28$	$+0.17 \\ -0.07 \\ +0.40$	$-0.19 \\ +0.38$	$-0.0 \\ +0.1$	$\begin{bmatrix} 7 \\ 4 \end{bmatrix} = 5$	$0.1_{-4.1}^{+4.4}$	

Regularized 11