Higgs-portal Dark Matter:EFT vs UV-complete models

Abdelhak DJOUADIUniversidad de Granada (soon!)

Higgs-portal Dark Matter Phenomenology and complementarityThe case of vector DM: the $\mathbf{U(1)}_X$ opti Discussion and Conclusion \overline{X} option

with Giorgio Arcadi and Marumi Kado, arXiv:2001.10750 and work to appear

Madrid 5/11/2020

Higgs-portal DM: EFT vs UV

A. Djouadi – p.1/12

The Higgs portal to dark matter

Dark Matter: ^a crucial hint for physics beyond the SM.

25% of energy budget of Universe DM makes: $\frac{d}{d}$ $\frac{d}{d}$ $\frac{d}{d}$ $\frac{d}{d}$ $\frac{d}{d}$ $\frac{d}{d}$ $\frac{d}{d}$ $\bf 80\%$ of total matter of Universe PLANCK: $\Omega_{\rm DM} \rm h^2$ $^2=0.119\pm0.001$

- WIMPs are the best candidates and need to be searched for.
- Easiest and most minimal way to implement them in practice:
- –– a singlet particle but of any spin i.e. a scalar, vector or fermion;
- $\mathcal{L}_{\mathcal{A}}$ – QED neutral + isosinglet, no SU(2)xU(1) charge: no Z couplings;
- ${\rm Z_{2}}$ $_{\bf 2}$ parity for stability: no couplings or mixing with fermions.
- Hence, only couplings with the Higgs bosons \Rightarrow Higgs portal DM:
• annihilates into SM narticles via s-channel Higgs exchange:
- annihilates into SM particles via s-channel Higgs exchange ;
- interacts with fermionic matter only through Higgs exchange;
- can be produced in pairs via Higgs boson exchange or decays. Occam razor (again): assume only the SM-like Higgs boson.

The Higgs portal to dark matter

Use ^a rather simple effective field theory (EFT) approach:

$$
\Delta \mathcal{L}_\text{s} = -\frac{1}{2} M_\text{s}^2 \text{s}^2 - \frac{1}{4} \lambda_\text{s} \text{s}^4 - \frac{1}{4} \lambda_\text{Hss} \Phi^\dagger \Phi \text{s}^2 \\ \Delta \mathcal{L}_\text{v} = \frac{1}{2} M_\text{v}^2 \text{v}_{\mu} \text{v}^{\mu} + \frac{1}{4} \lambda_\text{v} (\text{v}_{\mu} \text{v}^{\mu})^2 + \frac{1}{4} \lambda_\text{Hvv} \Phi^\dagger \Phi \text{v}_{\mu} \text{v}^{\mu} \\ \Delta \mathcal{L}_\chi = -\frac{1}{2} M_\chi \bar{\chi} \chi - \frac{1}{4} \frac{\lambda_\text{H}\chi \chi}{\Lambda} \Phi^\dagger \Phi \bar{\chi} \chi
$$

In principle, the terms $\lambda_\mathbf{s} \mathbf{s}^4$ After EWSB, the Φ field becomes $\Phi \to \frac{1}{\sqrt{2}}(\nu+H)$ with v=246 GeV, $^{\textbf{4}}$ and $\lambda_{\textbf{v}}(\textbf{v}_{\mu}\textbf{v}^{\mu})$ μ) 2 do not matter to us. and the various mass terms in the three spin cases will become:1

$$
\rm m_x^2 = M_x^2 + \frac{1}{4} \lambda_{Hxx} v^2
$$

Two free parameters: DM mass $\rm m_x$ \Rightarrow very simple, model–independent and rather convenient approach, \Rightarrow often used as a benchmark in theoretical/experimental analyses $_{\mathrm{\textbf{x}}}$ and DM-Higgs coupling $\lambda_{\textbf{H}\textbf{xx}},$ ⇒ often used as a benchmark in theoretical/experimental analyses
(desnite that it is effective and even non-renormalisable in some ca (despite that it is effective and even non-renormalisable in some cases).

Madrid 5/11/2020Higgs-portal DM: EFT vs UV A. Djouadi – p.4/12

• Collider searches in invisible Higgs decays into DM, very simple:

$$
\Gamma_{\mathrm{inv}}(\mathrm{H}\to \mathrm{ss})=\frac{\lambda_{\mathrm{Hss}}^2 \mathrm{v}^2 \beta_{\mathrm{s}}}{64\pi \mathrm{M}_{\mathrm{H}}}
$$

$$
\Gamma_{\mathrm{inv}}(\mathrm{H}\to \mathrm{vv})=\frac{\lambda_{\mathrm{Hvv}}^2 \mathrm{v}^2 \mathrm{M}_{\mathrm{H}}^3 \beta_{\mathrm{v}}}{256\pi \mathrm{M}_{\mathrm{v}}^4}\left(1-\frac{4 \mathrm{M}_{\mathrm{v}}^2}{\mathrm{M}_{\mathrm{H}}^2}+\frac{12 \mathrm{M}_{\mathrm{v}}^4}{\mathrm{M}_{\mathrm{H}}^4}\right)
$$

$$
\Gamma_{\mathrm{inv}}(\mathrm{H}\to \mathrm{f}\mathrm{f})=\frac{\lambda_{\mathrm{H}\mathrm{f}}^2 \mathrm{v}^2 \mathrm{M}_{\mathrm{H}} \beta_{\mathrm{f}}^3}{32\pi \Lambda^2}
$$

- BR(H→inv) measured through $\Gamma_\mathrm{H}, \mathrm{g}_{\mathrm{H} \mathrm{f} \mathrm{f}} + \mathrm{g}_{\mathrm{H} \mathrm{V} \mathrm{V}}$ or $\mathrm{p}\mathrm{p}\mathrm{\rightarrow}\mathrm{X}\mathrm{+}\mathrm{E}_\mathrm{T}^\mathrm{mis}$.
- Spin–independent direct detection, simple for s, v, ^f DM states: $\sigma_{\mathbf{x}-\mathbf{N}}^{\mathbf{SI}}=$ the company of the company of the company of λ2 $\rm Hxx$ $16\pi{\rm M}_{\scriptscriptstyle\rm T}^4$ tarity ha $\bf H$ ${\bf m}$ 4 ${\bf N}$ f 2 ${\bf N}$ $\frac{\mathbf{m_N \cdot N}}{(\mathbf{m_x + m_N})^2} \delta'_{\mathbf{x}}, \text{ with } \delta_{\mathbf{s}} = \delta_{\mathbf{v}} =$ Nice complementarity between collider and direct detection searches: $\mathbf{1}, \delta_{\mathbf{f}}$ $_{\rm f}=\frac{4}{\Lambda}$ Λ^2 ${\bf BR}($ 그는 아이들은 아이들은 그 사람들은 어디에 대해 보이는 것이 없었다. $\mathrm{H\! \rightarrow \! inv}) = \frac{\Gamma(\mathrm{H}}{\Gamma_\mathrm{H}^{\mathrm{SM}} + \mathrm{I}}$ $\frac{\Gamma(\text{H}\rightarrow \text{xx})}{\Gamma_\text{H}^{\text{SM}}+\Gamma(\text{H}\rightarrow \text{xx})}=$ \sim 4. \sim 4.4 \sim $\sigma_{\bf xp}^{\bf SI}$ $\Gamma^{\rm tot}_{\rm H}/r_{\rm x}+ \sigma^{\rm SI}_{\rm xp}$ In principle needs to fit the Planck value: $\Omega_{\rm DM} {\rm h}^2 \! = \! 0.119$; $\frac{\Gamma_{\text{irr}}}{\sigma_{\text{str}}}=\frac{\Gamma_{\text{irr}}}{\sigma_{\text{str}}}$ $\sigma_{\bf xp}^{\bf SI}$ $=\!f$ $\mathbf{f}(% \mathbf{A})=\left(\mathbf{I}_{\mathbf{A}}\right) ^{T}$ $\rm m_x, \lambda_{Hxx})$ $^2\!=\!0.119\!\pm\!0.001$
	- Relic density $\propto 1/\langle \sigma({\bf x}{\bf x}\to{\bf H}\to{\bf f}{\bf \bar{f}}){\bf v}_{\bf r}\rangle$ annihilation rate.
	- \sim - \sim \sim \sim but maybe no, X not all DM and/or $\Omega\rm{h}^2$ obtained via other means...

Madrid 5/11/2020

Higgs-portal DM: EFT vs UV

A. Djouadi – p.7/12

ut there is a problem: EFT approach might break down too early...

$$
\Delta \mathcal{L}_s = -\frac{1}{2} M_s^2 s^2 - \frac{1}{4} \lambda_{Hss} \Phi^{\dagger} \Phi s^2 \Rightarrow \textbf{OK in principle;}
$$
\n
$$
\Delta \mathcal{L}_\chi = -\frac{1}{2} M_\chi \bar{\chi} \chi - \frac{1}{4} \frac{\lambda_{H\chi\chi}}{\Lambda} \Phi^{\dagger} \Phi \bar{\chi} \chi \Rightarrow \textbf{non renor. } \Lambda \gtrsim \mathbf{a \ few TeV;}
$$
\n
$$
\Delta \mathcal{L}_v = \frac{1}{2} M_v^2 v_\mu v^\mu + \frac{1}{4} \lambda_{Hvv} \Phi^{\dagger} \Phi v_\mu v^\mu \Rightarrow \textbf{severe pbs with unitarity.}
$$

Consider processes like $\mathrm{vv}\!\rightarrow\!\mathrm{H}\!\rightarrow\!\mathrm{vv},$ in order to maintain unitarity, needs:

 $\mathbf{M_v} \geq \lambda_\mathbf{Hvv}\mathbf{v}/\sqrt{16\pi}$ \Rightarrow low $\rm M_{v}$ for large $\lambda_{\rm Hv}$
Needs a more realistic (I $_{\text{v}}$ for large $\lambda_{\text{H} \text{vv}}$ forbidden. Needs ^a more realistic (UV?) theory:

- introduces light degrees of freedom
- 2004 STOMME VID DE STATER ANDERS affects significantly DM phenomenology
- spoils collider/DD complementarity!

Vector DM case removed from recent $\text{ATLAS+CMS}\ \text{H}_{\text{inv}}$ analyses. Can we circumvent problem? Vector DM UV-complete U(1) theory. Madrid 5/11/2020 Higgs-portal DM: EFT vs UVA. Djouadi – p.8/12

Case of vector DM: the $\mathbf{U(1)}_X$ $_X$ option

Simplest UV scenario, introduce new singlet S which mixes with Φ :

$$
\bf{V_{\Phi,S}}=\frac{\lambda_H}{4}\Phi^4+\frac{\lambda_{HS}}{4}\Phi^2S^2+\frac{\lambda_S}{4}S^4+\frac{1}{2}\mu_H^2\Phi^2+\frac{1}{2}\mu_S^2S^2
$$

Both fields develops vevs: $v^2\equiv\frac{2\lambda_\text{HS}\mu_\text{S}^2-4\lambda_\text{S}\mu_\text{H}^2}{4\lambda_\text{H}\lambda_\text{S}-\lambda_\text{HS}^2},~~\omega^2\equiv\frac{2\lambda_\text{HS}\mu_\text{S}^2-4\lambda_\text{S}\mu_\text{H}^2}{4\lambda_\text{H}\lambda_\text{S}-\lambda_\text{HS}^2},$ \mathbf{V} 2 ≡There are two Higgs states $\mathbf{H_1}, \mathbf{H_2}$ with mixing θ and masses 2 $\lambda_{\mathbf{H}\mathbf{S}}$ μ 2 S−4λS μ 2 $\bf H$ $4\lambda_{\mathbf{H}}\lambda_{\mathbf{S}}\mathbf{-\lambda_{\mathbf{H}\mathbf{S}}^{2}}$ $\frac{\mathbb{R}^n+11}{2}, \quad \omega^n$ 2 ≡2 $\lambda_{\mathbf{H}\mathbf{S}}$ μ 2 $\bf H$ −4λ $\bf H$ μ 2 S $4\lambda_{\mathbf{H}}\lambda_{\mathbf{S}}\mathtt{-}\lambda_{\mathbf{H}}^{\mathbf{2}}$ s $_{\rm HS}$ $\bf{M_{11}^2} \;\; \; \bf{_{11}} \;\; = \lambda_H v^2 + \lambda_S \omega^2$ $_{\mathbf{2}}$ with mixing θ and masses: $\rm H_1, H_2$ $=\lambda_{\mathbf{H}}\mathbf{v}$ 2 $^2+\lambda_{\textbf{S}}\omega$ 2 ${\bf ^2} \mp (\lambda_{\bf S} \omega$ 2 $^{\mathbf{2}}-\lambda_{\mathbf{H}}\mathbf{v}$ 2 $^{\mathbf{2}})/\mathrm{cos}2\theta$

 Interactions of Higgs, with fermions/bosons and self-interactions: ${\rm L}_{\rm S}^{\rm SM}$ $\mathbf{S^{M}_{S}}=(\mathbf{H_{1}}\mathbf{c}_{\theta}+\mathbf{H_{2}}\mathbf{s}_{\theta})\left(2\mathbf{M^{2}_{W}}\mathbf{W}^{+}_{\mu}\right)$ \blacksquare μ $\mathbf{W}^ \mu$ $^{\mu}+\text{M}_\textbf{z}^{\textbf{2}}$ $I¹²$ aga | k $\mathbf{Z} \mathbf{Z}_\mu \mathbf{Z}^\mu$ $-~\mathrm{m_{f}}$ $\overline{\bf f}{\bf f}\Bigr)\,/\bf v$ ${\rm L}_{\rm S}^{\rm tril} = -(\kappa_{111}{\rm H}_1^3+\kappa_{112}{\rm H}_1^2{\rm H}_2{\rm s}_\theta+\kappa_{221}{\rm H}_1{\rm H}_2^2{\rm cos}_\theta+\kappa_{222}{\rm H}_2^3){\rm v}$ DM introduced as dark gauge boson of $\mathbf{U(1)}_X$ broken by fiel $(\kappa_{\bf 111} H_1^3$ $\frac{3}{1}+\kappa_{\bf 1\bf 12}H_{\bf 1}^{\bf 2}$ $^2_1\mathrm{H}_2\mathrm{s}_\theta+\kappa_{221}\mathrm{H}_1\mathrm{H}_2^2$ ${2\over 2} \mathrm{cos}_\theta + \kappa_{222} \mathrm{H}_2^3$ $\binom{3}{2}\mathrm{v}/2$ \overline{X} broken by field S: $\rm L_X=-\frac{1}{4}$ $1 \approx 100$ (ii α) iii $1 \approx 2$ (ii) $2 \approx 2$ (iii) $1 \approx 2$ (iii) $\frac{1}{4}\mathbf{v}_{\mu\nu}\mathbf{v}^{\mu\nu}+(\mathbf{D}^{\mu}%)^{2}+2\mathbf{v}_{\mu\nu}\mathbf{v}^{\mu\nu}+\mathbf{v}_{\mu\nu}\mathbf{v}^{\mu\nu}\mathbf{v}^{\nu\mu}\mathbf{v}^{\mu\nu}$ $^{\mu}\textbf{S})^{\dag}$ $({\bf D}_\mu{\bf S})$ ${\bf V}({\bf H},{\bf S})\;,{\bf D}_\mu =$ $\partial_\mu + \mathrm{i}\tilde{\mathbf{g}}\mathbf{v}$ μ 2 $\frac{1}{2}\tilde{\mathbf{g}}\mathbf{M}$ $_{\mathbf{v}}\left(\mathbf{H_{2}c}_{\theta}\!-\!\mathbf{H_{1}}\mathbf{s}_{\theta}\right)\mathbf{v}_{\mu}\mathbf{v}^{\mu}$ $\mathbf{M}_{\mathbf{v}} = \frac{1}{2}\tilde{\mathbf{g}}\omega$; the free parameters are: $[\mathbf{M}_{\mathbf{V}}, \tilde{\mathbf{g}}, \sin\theta, \mathbf{M}_{\mathbf{H}_2}]; \mathbf{H}_1 \equiv \mathbf{H}$ $\mu+\frac{1}{2}$ 8 $\frac{1}{8}\tilde{g}^2$ $^{\rm 2}{\rm (H_1^{\rm 2}}$ $\mathbf{\tilde{1}}\mathbf{S}$ 2 $\rm \beta^2\!-\!2H_1H_2s_\theta c_\theta\!+\!H_2^2$ $\mathbf{\bar{2}C}$ 2 $\left(\frac{2}{\theta}\right)\mathbf{V}_{\mu}\mathbf{V}^{\mu}...$ $\frac{1}{2}\! \tilde{\mathbf{g}}\omega$; the free parameters are: $[\mathbf{M}_{\mathbf{V}},\tilde{\mathbf{g}},\mathbf{sin}\theta,\mathbf{M}_{\mathbf{H_2}}]; \mathbf{H}_1\!\equiv\! \mathbf{H}.$

Case of vector DM: the $\mathbf{U(1)}_X$ $_X$ option

Phenomenology of DM vector boson in EFT and $\mathbf{U(1)}_X$ $_X$ scenario. Idea in mind: can EFT be good limit of UV model and when/where?

 $\Gamma_{\rm inv}|_{\rm EFT}$ =λ2 HVVv2 \mathbf{z}_{M} 3 $\bf H$ $128\pi \mathrm{M}_{\mathrm{yr}}^4$. . . ${\rm V}$ β_{VH} Invisible Higgs decays@LHC: $\Gamma_{\rm inv}|_{\rm U(1)}=$ $=\frac{\tilde{\text{g}}^2\text{sin}}{32\pi}$ 2 \mathbf{z}_{θ} 32π $\mathbf M$ 3 $\bf H$ 1 M^2 . . . ${\bf V}$ $\beta_{\textbf{V}\textbf{H}_1}$ Solving above, express SI cross section $\sigma^{\rm SI}_{\rm Vp}$ in terms of BR(H \rightarrow inv) $\sigma^\mathbf{SI}_\mathbf{Vp}|_{\mathbf{EFT}}$ $=8\mu$ 2 $\mathbf{V}\mathbf{p}$ $\mathbf M$ 2 $\mathbf V$ M^3 $\mathbf{A} \bullet \mathbf{A}$ $\bf H$ ${\bf BR(H)}$ \rightarrow VV) $\Gamma^{\rm tot}_{\rm H}$ $\beta_{\rm VH}$ 1 M^4 $\bf H$ m2 $\mathbf p$ ${\bf v^2}$ $\frac{\rm{p}}{2}|{\rm{f}}_{\rm{p}}|^{2}$ $\sigma^{\mathbf{SI}}_{\mathbf{V}\mathbf{p}}|_{\mathbf{U}(\mathbf{1})}=\mathbf{8}\cos^2\theta$ $^{\mathbf{2}}\,\theta\mu$ z $\mathbf{V}\mathbf{p}$ $\mathbf M$ 2 V M^3 So, when does EFT give the same results as the complete model? ${\rm H}_{\bf 1}$ ${\bf BR(H)}$ 1 $_{\text{1}}$ →VV) $\Gamma^{\mathrm{tot}}_{\text{H}_{\text{1}}}$ 1 $\frac{1}{\beta_{\rm VH_1}}^{\rm DVV)\Gamma^{\rm tot}_{\rm H_1}}\biggl(\frac{1}{\rm M_{\rm H}^2}\biggl.$ M^2 ${\rm H}_{\bf 2}$ −1 M^2 $\left(\frac{1}{2} \right)^2$ m2 p ${\bf v^2}$ $\frac{\text{P}}{2}|\text{f}_\text{p}|^2$ cos2 $^{\mathbf 2}\theta\, \mathbf M^{\mathbf 4}_\mathbf L$ To see where/when it happens, full scan in $\mathrm{U}(1)$ parameter space: $_{\rm H}^{4}\ (1/{\rm M}_{\rm H}^{2}$ $\rm \frac{2}{H_2}-1/M_F^2$ $\begin{pmatrix} 2 \ \mathrm{H}_1 \end{pmatrix}^{\mathbf{2}}$ $~\tilde{}~\approx1.$

 $\sin\!\theta \in [10^{-3}$ $\left[10^{-2}\right],\,\mathrm{M}_{\mathrm{V}}\in\left[10^{-2}\right]$ $\left[7,62.5\right]~{\rm GeV},~{\rm M_{H_{2}}}\in [125,1000]~{\rm GeV}.$

Case of vector DM: the $\mathbf{U(1)}_X$ $_X$ option

Discussion and Conclusions

EFT is indeed ^a good limit of an UV–complete theory for vector DM, 'light' degrees of freedom do not spoil LHC and DD complementarity. This has been proven inthe simplest possible U(1) model of vector DM: \Rightarrow analyses of vector DM at the LHC are possible and should be back;
 \Rightarrow re-implementation discussed by LHC_DM WG and is on the way. \Rightarrow re-implementation discussed by LHC–DM WG and is on the way. However, requirement that vector DM gives good Ωh^2 not enforced! We tried in U(1) and failed: works only if $\rm M_{V}\!\approx\! \frac{1}{2}M_{H}$. Possible cure – give un thermal DIVI paradigm and invoke modif 1 2 $\rm M_H$. Possible cures: give up thermal DM paradigm and invoke modified cosmology;– look at more complicated/enlarged DM sectors and scenarios. We tried the more involved cases of $\mathbf{SU}(2)_X$ $_X$ and SU(3) $\,X\,$ $_X$ DM models and yes, EFT with good relic can be recovered under some conditions. Arcadi, AD, Kado (in preparation)

In fact, discussion can be generalized to fermionic and scalar cases. It is under way; I hope to have the chance to tell you about it soon....

Muchas Gracias!

Madrid 5/11/2020Higgs-portal DM: EFT vs UV