Search for leptoquark pair production through tttt final states with full Run-2 dataset

Stergios Kazakos (IFAE)

4th RED LHC workshop November 5th, 2020

^{*} The project that gave rise to these results received the support of a fellowship from "la Caixa" Foundation (ID 100010434). The fellowship code is LCF/BQ/IN18/11660049. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 713673.

Introduction

- ★ Leptoquarks (LQs) are hypothetical particles that could explain the deviations in R(D*)/R(D) ratio reported by the B-factories experiments and indicating a potential deviation in Lepton Flavour Universality (LFU). [more information here]
- ★ Search for **scalar LQ** pair production with **down-type LQ**₃^d (charge 1/3) using the full Run-2 dataset.
- Their quantum numbers suggest that **down-type LQ**₃^d should couple simultaneously to a **top quark** and a **τ-lepton** or a **bottom quark** and a **neutrino** with decay modes:
 - tτtτ (*B*=1) and tτbν (*B*<1)

giving final states with multiple light leptons and hadronically decaying τ s:

- $-t \to bW^{\pm} \to b \ (qq/\nu_{\ell}\ell^{\pm})$
- $-\tau \rightarrow v_{\tau} (qq/v_{\ell}\ell^{\mp}) \text{ (if } qq \text{ then } \tau \equiv \tau_{had})$
- \star First dedicated ATLAS analysis in LQLQ \rightarrow t τ t τ channel.

Public result: <u>ATLAS-CONF-2020-029</u>

Analysis strategy

Channel categorisation is based on **number of light leptons (e/μ)** and **number of hadronic τs**.

Number of au_{had}

Number of e/µ

- ★ Search range is from 0.8 to 1.5 TeV for the current result (to be extended from 0.5 to 1.6 TeV in the publication).
- ★ There are 6 validation (VR), 17 control (CR) and 7 signal (SR) regions are defined that are orthogonal to each other.
 - \rightarrow Fitting $H_{\rm T,lep}$ or number of events in CRs, $m_{\rm eff}$ in SRs.

Analysis strategy

Channel categorisation is based on **number of light leptons (e/μ)** and **number of hadronic τs**.

Number of au_{had}

Number of e/µ

- ★ Search range is from 0.8 to 1.5 TeV for the current result (to be extended from 0.5 to 1.6 TeV in the publication).
- There are 6 validation (VR), 17 control (CR) and 7 signal (SR) regions are defined that are orthogonal to each other.
 - \rightarrow Fitting $H_{\rm T,lep}$ or number of events in CRs, $m_{\rm eff}$ in SRs.

ATLAS-CONF-2020-029

Main discriminating variable

$$\star m_{\text{eff}} = \sum_{\text{(jet, e, }\mu, \, \tau)} p_{\text{T}} + E_{\text{T}}^{\text{miss}}$$

Major backgrounds & BG composition (CRs)

Background estimation: Kinematic RW

- \star tt+jets: Dominant background in 1 ℓ w/ true light leptons and true τ_{had} s. Substantial background in rest of the channels when there is presence of non-prompt light leptons or fake τ_{had} s from jets.
 - Corrected by **njet-dependent** m_{eff} **RW function** derived in **e** μ **(opposite-sign)+0** τ_{had} **channel** (and referred to as "kinematic reweighting").
 - The difference between the $m_{\rm eff}$ RW functions derived in $e\mu OS+0\tau_{\rm had}$ and $1\ell+1\tau$ OS channels is taken as systematic to account for potential differences between **dileptonic** and **semi-leptonic** tt kinematics.

- In m_{eff} distribution the ratio of background subtracted data over $\overline{\text{tt}}$ +tW MC is fitted with a first order polynomial $(y=a_0+a_1\cdot x)$ in various njet bins.
 - This fit of the ratio is demonstrated in the case of **=4j** (left fig.) where the **green lines** show the fit's **statistical** uncertainty.

Background estimation: Fake τ_{had} correction

- After the kinematic RW is applied **fake** τ_{had} **SFs** are derived in **2lOS+1** τ (eµ) region and are applied to fake τ_{had} s in MC in all channels.
 - Systematics are evaluated by comparing fake tau SFs in tt and **Z+jets** CRs.
- The good modelling after the fake τ_{had} correction is demonstrated in $1\ell+1\tau SS$ CR and $2\ell OS+1\tau$ VR which are dominated by fake $\tau_{had}s$ (**leading tau** p_T and **njets** are shown respectively).

ATLAS-CONF-2020-029

Background estimation: Template fit

- ttW, non-prompt e/μ, Int.(ttγ*)/Mat. Conv.:

 The associated normalisation factors (NFs) are derived by 2ℓSS/3ℓ+0τ channels after a template fit (TF).
- \star The TF method is used as in ttH-ML analysis:
 - Five NFs are left free-floated.
 - The **background NFs** and the **LQ signal strength** are fitted simultaneously.
 - Number of event yields is used in conversion CRs and $H_{\rm T.lep}$ in the other CRs.

neously.
s used in conversion
c CRs.
Check the regions/variables:

Background estimation: VV, ttZ

- ★ The 3ℓVV and 3ℓttZ CRs are used to improve the estimation of the corresponding background contributions by requiring at least one ℓ pair at the Z mass window (on-shell Z).
- ★ Background expectation is similar to the SM expectation.
 - → Cross-section and modelling uncertainties are included as NPs, no need for free-floating NFs.

ATLAS-CONF-2020-029

Good modelling pre-fit and post-fit in $H_{T,lep}$ (fitted variable) and m_{eff} (discriminating variable in SRs).

<u> ATLAS-CONF-2020-029</u>

$m_{\rm eff}$ distribution in signal regions

- The fitted variable (m_{eff}) is shown post-fit for all the SRs of the analysis.
- The result is **compatible with the "no signal" hypothesis** as there are no (or not enough) real events in the most sensitive bins (right tail of m_{eff} distribution).
- The expected LQ signal at 1.1 TeV mass point is shown for demonstration (μ =1, B=1).

p-value as a function of $m_{\rm LO}$

- The **observed** and **expected p-values** (p_0) are plotted as a function of m_{LQ} for B=1 (red) and B=0.5 (blue).
- This illustrates the significant expected sensitivity of the search, which exceeds 5 s.d. for m_{LQ} < 1.21 TeV and 3 s.d. for m_{LQ} < 1.36 TeV for B=1.
- Improvement of a factor of \sim x10 in sensitivity (\sim 500 GeV in m_{LQ}) w.r.t. the previous ATLAS and CMS results (36 fb⁻¹).

ATLAS-CONF-2020-029

Expected and observed upper limits

Since no significant excess was found over the SM background prediction, 95% CL upper limits were set on the LQ pair production cross section as a function of m_{LQ} (B=1).

- Sensitivity is mostly driven by 1ℓ channels with a significant contribution from $\geq 2\ell$ channels.
- The combined observed lower limit for m_{LQ} in all channels is **1.43 TeV** for B=1 and **1.22 TeV** for B=0.5.

Summary

- \bigstar First result of a dedicated full Run-2 ATLAS analysis in LQLQ \to tautau channel is presented.
- \bigstar Various modelling corrections and challenging background categorisation methods were used.
- No significant excess was found over SM prediction and upper limits were set on the LQ production cross-section.
- ★ Upper limits were improved by ~500 GeV (factor of ~x10 in sensitivity) w.r.t. to previous ATLAS and CMS results (36 fb⁻¹).

Backup

Object and event selection

Event (pre-)selection:

- ≥ 2 jets, ≥ 1 bjets (@ 77% DL1 WP)
- Single-lepton Trigger (1ℓ channel)
- Single- or Di-lepton Triggers (≥2ℓ channels)

<u>Jets</u>:

- AntiKt4EMPFlowJets
- $-p_{T}$ ≥ 25 GeV
- $| | \eta | < 2.5$
- JVT ≥ 0.5 (p_T < 60 GeV, |η|< 2.4)

Light leptons:

	e			μ		
	L	T	T*	L	T	T*
Identification	loose	tight	tight	loose	medium	medium
					or high- $p_{ m T}$	or high- p_{T}
Isolation		Yes			Yes	
Non-prompt-lepton veto	No	No	Yes	No	No	Yes
Electron charge-misassignment veto	No	No	Yes		_	
Electron material-conversion veto	No	No	Yes		_	
Electron internal-conversion veto	No	No	Yes		_	
$ d_0 /\sigma_{d_0}$		< 5			< 3	
$ z_0 \sin \theta $ [mm]		< 0.5			< 0.5	

Overlap removal:

Reject	Against	Criteria
Electron	Muon	$\Delta R < 0.1$
Jet	Electron	$\Delta R < 0.2$
Jet	Muon	$\Delta R < 0.2$
Tau	Electron	$\Delta R < 0.2$
Tau	Muon	$\Delta R < 0.2$
Jet	Tau	$\Delta R < 0.2$

Taus:

- Originating from PV
- 1- or 3-prong
- $-p_{\rm T}$ ≥ 25 GeV
- $-|\eta| < 2.5$, not in $(1.37 \le |\eta| \le 1.52)$
- JetIDWP: JetRNNSigLoose (L) / JetRNNSigMedium (M)
- EleBDTWP: ELEIDBDTLOOSE

<u> ATLAS-CONF-2020-029</u>

Data/MC agreement & BG composition (SRs/VRs)

SR variables before cutting on them

