
McM Scripting
Presented by Justinas Rumševičius

2020

Before we start
● Link to McM: https://cms-pdmv.cern.ch/mcm/
● McM Rest API: https://cms-pdmv.cern.ch/mcm/restapi
● GitHub repo with examples: https://github.com/cms-PdmV/mcm_scripts
● For most actions you will need to have a valid CERN SSO cookie

○ Public APIs do not require a cookie. Public APIs: https://cms-pdmv.cern.ch/mcm/public/restapi/

● You can use either provided python code or do everything with curl
● Previous tutorials:

○ https://indico.cern.ch/event/807778/
○ https://indico.cern.ch/event/735384/

2

https://cms-pdmv.cern.ch/mcm/
https://cms-pdmv.cern.ch/mcm/restapi
https://github.com/cms-PdmV/mcm_scripts
https://cms-pdmv.cern.ch/mcm/public/restapi/
https://indico.cern.ch/event/807778/
https://indico.cern.ch/event/735384/

McM scripting and cookies
● McM scripting class will try to handle cookies for you
● If no cookie path is specified, McM scripting class will check whether:

○ ~/private/prod-cookie.txt exists if dev=False. If yes, it will use this file as cookie
○ ~/private/dev-cookie.txt if dev=True. If yes, it will use this file as cookie

● If no cookie path is specified and files mentioned above do not exist, McM
scripting class will automatically generate cookie file

● McM scripting class will automatically generate a new cookie up to three
times if request to McM fails

● You can also delete cookies, so they could be automatically recreated:
○ rm ~/private/*-cookie.txt

3

● Use cern-get-sso-cookie command line tool to create cookie file:
○ cern-get-sso-cookie --url https://cms-pdmv-dev.cern.ch/mcm/ -o dev-cookie.txt

○ cern-get-sso-cookie --url https://cms-pdmv.cern.ch/mcm/ -o prod-cookie.txt

● It is already available in lxplus nodes
● It expires after ~10 hours
● Dev cookie is valid only for dev environment and production cookie is

available only for production environment
● More info can be found here:

○ https://linux.web.cern.ch/linux/docs/cernssocookie.shtml

Generating CERN SSO cookie

4

https://linux.web.cern.ch/linux/docs/cernssocookie.shtml

Prerequisites - “Step 0”
● In order to use McM scripting class, you have to import it
● We recommend to use one stored in AFS - always the newest version
● McM scripting class code can be found in github:

○ https://github.com/cms-PdmV/mcm_scripts/blob/master/rest.py

● To use code from AFS, add this to your python script imports:
○ import sys
○ sys.path.append('/afs/cern.ch/cms/PPD/PdmV/tools/McM/')
○ from rest import McM

● McM(dev=True) will use development environment
● McM(dev=False) will use production (real-deal) environment
● For more verbosity, you can enable debug printing McM(debug=True)

5

https://github.com/cms-PdmV/mcm_scripts/blob/master/rest.py

Getting requests
● Using python:

○ mcm = McM(dev=True)
○ mcm.get('requests', 'PPD-RunIIWinter19PFCalib17pLHE-00001', method='get')
○ mcm.get('requests', query='prepid=*-RunIIWinter19PFCalib17pLHE-*&status=new')

● Using curl:
○ curl -s -k --cookie dev-cookie.txt

https://cms-pdmv-dev.cern.ch/mcm/restapi/requests/get/PPD-RunIIWinter19PFCalib17pLHE-
00001

○
○ curl -s -k --cookie dev-cookie.txt

https://cms-pdmv-dev.cern.ch/mcm/search/?db_name=requests&prepid=*-RunIIWinter19PFCal
ib17pLHE-*

● Four parts: <database name>, <prepid>, <method> (get is default), <query>

6

Databases in McM
● Databases in McM:

○ batches
○ campaigns
○ chained_campaigns
○ chained_requests
○ flows
○ invalidations
○ lists
○ mccms
○ requests
○ users

7

Queries in McM
● Queries in McM scripting are the same as you see in your browser URL bar
● Exact value

○ prepid=PPD-RunIIWinter19PFCalib17GS-00004
○ tags=Autumn18P1Moriond19DR

● Wildcards
○ prepid=*-RunIIWinter19PFCalib17GS-*
○ member_of_chain=PPD-chain_RunIIWinter19PFCalib17GS-*

● Multiple conditions
○ pwg=PPD&member_of_campaign=RunIIWinter19PFCalib17GS
○ approval=submit&status=submitted

8

Getting a request and looking at it
● Using python:

○ import json
○ import sys
○ sys.path.append('/afs/cern.ch/cms/PPD/PdmV/tools/McM/')
○ from rest import McM
○
○ # Create McM instance, use default cookie location
○ mcm = McM(dev=True)
○ # Prepid of a request
○ prepid = 'PPD-RunIIWinter19PFCalib17pLHE-00001'
○ # Get request (dictionary) from McM with "prepid" prepid
○ req = mcm.get('requests', prepid)
○ # Print Python dictionary with nice indentation
○ print(json.dumps(req, indent=4, sort_keys=True))

9

Getting range of requests
● Using python:

 input_data = """
 B2G-Fall13-00001
 B2G-Fall13-00005 -> B2G-Fall13-00015
 """
 mcm.get_range_of_requests(input_data)

● Using curl:
 curl -X PUT -s -k --cookie dev-cookie.txt -H "Content-Type: application/json"

https://cms-pdmv-dev.cern.ch/mcm/restapi/requests/listwithfile -d
'{"contents":"B2G-Fall13-00001\nB2G-Fall13-00005 -> B2G-Fall13-00015"}'

10

Note the \n in curl’s json! Newlines are important here

Creating a new request
● To create a request, two fields are required: PWG and campaign
● Using python:

 request_dict = {'pwg': 'B2G', 'member_of_campaign': 'PhaseISpring17GS'}
 mcm.put('requests', request_dict)

● Using curl:
 curl -X PUT -s -k --cookie dev-cookie.txt -H "Content-Type: application/json"

https://cms-pdmv-dev.cern.ch/mcm/restapi/requests/save -d '{"pwg": "B2G",
"member_of_campaign": "PhaseISpring17GS"}'

11

Editing a request
● Using python:

 request = mcm.get('requests', 'B2G-PhaseISpring17GS-00001')
 request['notes'] = 'This is a note'
 mcm.update('requests', request)

● Using curl:
 curl -X PUT -s -k --cookie dev-cookie.txt -H "Content-Type: application/json"

https://cms-pdmv-dev.cern.ch/mcm/restapi/requests/update -d '{<your modified
request object>}'

12

Cloning a request
● Using python:

 request = mcm.get('requests', 'B2G-PhaseISpring17GS-00001')
 mcm.clone_request(request)

● Using curl:
 curl -X PUT -s -k --cookie dev-cookie.txt -H "Content-Type: application/json"

https://cms-pdmv-dev.cern.ch/mcm/restapi/requests/clone -d '{<your modified
request object>}'

13

Creating a new MccM ticket
● Using python:

 new_mccm = {'pwg': 'B2G', 'prepid': 'B2G', 'requests': [['B2G-Fall13-00005',
'B2G-Fall13-00007'], 'B2G-Fall13-00008']}

 mcm.put('mccms', new_mccm)

● Using curl:
 curl -X PUT -s -k --cookie dev-cookie.txt -H "Content-Type: application/json"

https://cms-pdmv-dev.cern.ch/mcm/restapi/mccms/save -d '{"prepid":"B2G",
"pwg":"B2G", "requests": ["B2G-Fall13-00008"]}'

● Note: list inside list represents a range
● Note: PrepID is same as PWG, but later on it gets overwritten
● Users should check if requests exist before ticket creation

14

Approving or resetting a request
● Steps: 0 - new, 1 - validation, 2 - define, 3 - approved, 4 - submit, None - approve

to next step
● Approve to next step with python:

 mcm.approve('requests', 'B2G-Fall13-00001', None)

● Approve to next step with curl:
 curl -s -k --cookie dev-cookie.txt

https://cms-pdmv-dev.cern.ch/mcm/restapi/requests/approve/B2G-Fall13-00001

● Reset with python:
 mcm.approve('requests', 'B2G-Fall13-00001', 0)

● Reset with curl:
 curl -s -k --cookie dev-cookie.txt

https://cms-pdmv-dev.cern.ch/mcm/restapi/requests/approve/B2G-Fall13-00001/0 15

● Am I in development or production environment? (mcm = McM(dev=True))
● If something should exist, does it really exist? (Check in McM website)
● If something shouldn’t exist, does it really not exist? (Check in McM website)
● print print print!
● Keep it simple - 10 short lines is better than one long line of code
● Default environment is dev (McM() is same as McM(dev=True))
● Play in development, work in production McM

○ Development: McM(dev=True) https://cms-pdmv-dev.cern.ch/mcm/
○ Production: McM(dev=False) https://cms-pdmv.cern.ch/mcm/

Tips and tricks: debugging

16

https://cms-pdmv-dev.cern.ch/mcm/
https://cms-pdmv.cern.ch/mcm/

Questions?

17

Exercises!
You thought you will get away without a test…?

18

Exercise 1
● Getting a request and looking at it:

○ Get this request in your script: PPD-Run3Summer19GS-00001
○ Print it with json.dumps(request, indent=4, sort_keys=True)

● Hint: check slides number 5 and 6

19

Exercise 2
● Updating a request attribute:

○ Get a random request (don’t use PPD-Run3Summer19GS-00001)
○ Change notes (string), memory (integer), energy (float) or/and tags (list of strings)
○ Update request in McM with print(mcm.update('requests', request))
○ Get the same request again
○ Print it using json.dumps and make sure values changed as intended

20

Exercise 3
● Getting chained requests:

○ Get ALL chained requests that contain contains=PPD-RunIIAutumn18DR-00016
○ Print chained request prepids and all requests in these chained requests
○ Expected result:

 PPD-chain_RunIIFall18GS_..._flowRunIIAutumn18NanoAODv4-00001
 PPD-RunIIFall18GS-00025
 PPD-RunIIAutumn18DR-00016
 PPD-RunIIAutumn18RECOBParking-00002
 PPD-RunIIAutumn18MiniAOD-00004
 PPD-RunIIAutumn18NanoAODv4-00003
 PPD-chain_RunIIFall18GS_..._flowRunIIAutumn18NanoAODv5-00001
 PPD-RunIIFall18GS-00025
 PPD-RunIIAutumn18DR-00016
 PPD-RunIIAutumn18RECOBParking-00002
 PPD-RunIIAutumn18MiniAOD-00004
 PPD-RunIIAutumn18NanoAODv5-00001

○ Hint: request list in chained request is called "requests"

21

Exercise 4
● Cloning a request:

○ Get this request in your script: PPD-Run3Summer19GS-00001
○ Change PWG attribute to your favourite PWG
○ Clone it using print(mcm.clone_request(request))
○ Function in previous step returns a dictionary that contains prepid of new (cloned) request
○ Fetch new request
○ Change memory to something else and notes to "This is a clone by <your name>"
○ Update request in McM with print(mcm.update('requests', request))
○ Fetch updated request again
○ Print it with json.dumps(request, indent=4, sort_keys=True)

22

Exercise answers

23

Exercise 1 answer code
import sys
import json
sys.path.append('/afs/cern.ch/cms/PPD/PdmV/tools/McM/')
from rest import McM

McM instance
mcm = McM(dev=True)

request = mcm.get('requests', 'PPD-Run3Summer19GS-00001')
This works as well:
request = mcm.get('requests', query='prepid=PPD-Run3Summer19GS-00001')
print(json.dumps(request, indent=4, sort_keys=True))

24

Exercise 2 answer code
import json
import sys
sys.path.append('/afs/cern.ch/cms/PPD/PdmV/tools/McM/')
from rest import McM

McM instance
mcm = McM(dev=True)

request = mcm.get('requests', 'B2G-2019GEMUpg14-00006')
print(json.dumps(request, indent=4, sort_keys=True))
request['notes'] = 'This is a note'
request['energy'] = 9.99
request['memory'] = 15900
request['tags'] = ['Tag1', 'Tag2', 'Tag3']
print(mcm.update('requests', request))

25

Exercise 3 answer code
import sys
sys.path.append('/afs/cern.ch/cms/PPD/PdmV/tools/McM/')
from rest import McM

McM instance
mcm = McM(dev=False)

chained_requests = mcm.get('chained_requests', query='contains=PPD-RunIIAutumn18DR-00016')
for chained_request in chained_requests:
 print(chained_request['prepid'])
 for request in chained_request['chain']:
 print(' %s' % request)

26

Exercise 4 answer code
import json
import sys
sys.path.append('/afs/cern.ch/cms/PPD/PdmV/tools/McM/')
from rest import McM

McM instance
mcm = McM(dev=True)

existing_request = mcm.get('requests', 'PPD-Run3Summer19GS-00001')
existing_request['pwg'] = 'TRK'
clone_result = mcm.clone_request(existing_request)
print(clone_result)
clone_prepid = clone_result['prepid']
cloned_request = mcm.get('requests', clone_prepid)
cloned_request['memory'] = 15900
cloned_request['notes'] = 'This is a clone by Justinas R.'
print(mcm.update('requests', cloned_request))
updated_cloned_request = mcm.get('requests', clone_prepid)
print(json.dumps(updated_cloned_request, indent=4, sort_keys=True))

27

