Highlights from the NA61/SHINE experiment

Antoni Marcinek for the NA61/SHINE Collaboration

Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland

Quark Matter 2022
5 April 2022, Kraków, Poland
SHINE = SPS Heavy Ion and Neutrino Experiment

\[\sqrt{s_{NN}} = 5.1–17.3(27.4) \text{ GeV} \]

Strong interactions (this talk)

- study the onset of deconfinement
- search for the critical point

Cosmic rays and neutrinos

Antoni Marcinek (IFJ PAN)
NA61/SHINE detector — unique multi-purpose facility

- large acceptance: full forward hemisphere, down to $p_T = 0$
- particle identification: dE/dx in Time Projection Chambers, Time of Flight
- ion (Be, Ar, Xe, Pb) and hadron (π, K, p) beams, various targets including liquid H$_2$

Central Ar+Sc collision at 150A GeV/c
NA61/SHINE in virtual reality: http://shine3d.web.cern.ch/shine3d
New results on identified hadron spectra in Be+Be and Ar+Sc collisions

see more in the talk by Maciej Lewicki on Wednesday
New results on identified hadron spectra in Be+Be and Ar+Sc collisions

see more in the talk by Maciej Lewicki on Wednesday
Multiplicity and net-charge fluctuations in p+p, Be+Be and Ar+Sc collisions

\[\kappa_1 = \langle N \rangle \]
\[\kappa_2 = \langle (\delta N)^2 \rangle = \sigma^2 \]
\[\kappa_3 = \langle (\delta N)^3 \rangle = S\sigma^3 \]
\[\kappa_4 = \langle (\delta N)^4 \rangle - 3\langle (\delta N)^2 \rangle^2 = K\sigma^4 \]

where:
- \(N \) – multiplicity; \(\delta N = N - \langle N \rangle \)
- \(\sigma \) – standard deviation
- \(S \) – skewness; \(K \) – kurtosis

- No structure indicating critical point
- Multiplicity \(\kappa_2 / \kappa_1 \): increasing difference between small systems (p+p and Be+Be) and a heavier system (Ar+Sc) with collision energy
- Net-charge \(\kappa_3 / \kappa_1 \): increasing difference between Be+Be and other systems (p+p and Ar+Sc) with collision energy
- \(\kappa_4 / \kappa_2 \): consistent values for all measured systems at given collision energy
Proton and charge hadron intermittency in Ar+Sc and Pb+Pb collisions

see posters by Nikolaos Davis, Tobiasz Czopowicz and Haradhan Adhikary

\[F_r(M) = \frac{\left\langle \frac{1}{M} \sum_{m=1}^{M} n_m(n_m - 1)\ldots(n_m - r + 1) \right\rangle}{\left\langle \frac{1}{M} \sum_{m=1}^{M} n_m \right\rangle^r} \]

where \(\langle \ldots \rangle \) denotes averaging over events, \(M \) the number of cells

\(\bullet \) Statistically independent points, cumulative variables

\(\bullet \) No indication of critical point in these analyses (power-law scaling \(F_r(M) \sim M^{\Phi_r} \))

\(\bullet \) Work on more advanced methodology ongoing

→ poster by N. Davis
The Levy stability parameter α describes shape of the source.

3D Ising model with random external field predicts $\alpha = 0.5 \pm 0.05$ at critical point.
Spectator-induced electromagnetic effects in Ar+Sc collisions

First time ever observation of the spectator-induced electromagnetic effects in peripheral small systems: Ar+Sc at 40\,A\,GeV/c

This effect provides information on the space-time evolution of the system

New data on hadron spectra in p+p reactions

see the talk by Maciej Lewicki on Wednesday
Detector upgrade and 2022+ data taking

Main goal: first ever open charm measurements at SPS

- What is the mechanism of open charm production?
- How does the onset of deconfinement impact open charm production?
- How does the formation of quark-gluon plasma impact J/ψ production?
Summary

- 2D scan in system size and energy is completed revealing unexpected dependencies (onset of fireball), delivering new exciting results
- So far no convincing indication of the critical point
- Detector upgrade almost done, open charm measurements starting this year
- NA61/SHINE contributions:
 - Talk on Wednesday: News on strangeness production from NA61/SHINE, Maciej Lewicki
 - Poster: Intermittency analysis in NA61/SHINE: hunting for critical point signatures in proton fluctuations, Nikolaos Davis
 - Poster: Intermittency of charged hadrons in NA61/SHINE, Tobiasz Czopowicz
 - Poster: New approach to study intermittency by NA61/SHINE, Haradhan Adhikary
 - Poster: Symmetric Levy HBT measurements at NA61/SHINE, Barnabás Pórfy
 - Poster: Feasibility studies of Lambda transverse polarization in p+p interactions within NA61/SHINE at the CERN SPS, Yehor Bondar
Heavy ion physics (this talk)

- 2D scan in collision energy and system size
- spectra, correlations, fluctuations
- search for the critical point
- study the onset of deconfinement

Cosmic rays and neutrinos

- precision measurements of spectra
- cosmic rays: Pierre Auger Observatory, KASCADE
- neutrinos: T2K, Minerva, MINOS, NOνA, LBNE
NA61/SHINE detector — unique multi-purpose facility

- fixed target experiment
 various targets including liquid H₂
- beams:
 ion (Be, Ar, Xe, Pb), hadron (∇, K, p)
- large acceptance:
 full forward hemisphere, down to $p_T = 0$
- directly only charged hadrons
- identification:
 dE/dx in Time Projection Chambers, Time of Flight
- centrality:
 forward energy in Projectile Spectator Detector

Central Ar+Sc collision at 150A GeV/c
NA61/SHINE in virtual reality: http://shine3d.web.cern.ch/shine3d
NA61/SHINE two-dimensional scan

NA61/SHINE explores the phase diagram of strongly interacting matter by performing a 2D scan in collision energy and system size.
Directed and elliptic flow in Pb+Pb

- Significant mass dependence of the directed flow and its midrapidity slope
- Some mass dependence also for elliptic flow
- Significant energy dependence for pion directed flow
- Insignificant energy dependence for elliptic flow