Development of transverse flow for small and large systems in conformal kinetic theory

Clemens Werthmann

in Collaboration with Sören Schlichting and Victor Ambrus based on PRD 105 (2022) 014031 and WiP

Bielefeld University

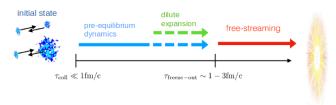
Standard model of heavy ion collisions

Spacetime evolution dominated by hydrodynamic phase

- early stage requires non-equilibrium description, but system quickly equilibrates
- strongly interacting QGP leaves imprints of thermalization and collectivity in final state observables
- transport description after hadronization

Small systems

Very dilute, hydrodynamics not necessarily applicable



- still collective behaviour is observed!
- collectivity can also be explained in kinetic theory, a microscopic description which does not rely on equilibration
- limit of large interaction rate is hydrodynamics!

Aim

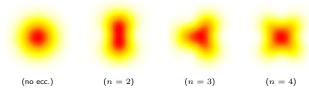
Case study in simplified kinetic theory description on full range from small to large system size with comparison to hydrodynamics based on transverse flow

Model and Setup

 describing time evolution of boost-invariant phase space distribution of massless bosons using Boltzmann equation in conformal RTA

$$p^{\mu}\partial_{\mu}f = -\frac{p^{\mu}u_{\mu}}{\tau_{R}}(f - f_{eq}) , \quad \tau_{R} = 5\frac{\eta}{s}T^{-1}$$

- initialized with vanishing longitudinal pressure and no momentum anisotropies
- $\blacksquare \text{ time evolution of } f \text{ depends only on opacity } \hat{\gamma} = \left(5\frac{\eta}{s}\right)^{-1} \left(\frac{30}{\nu_{\rm eff}\pi^2} \frac{1}{\pi} \frac{{\rm d}E_{\perp}^{(0)}}{{\rm d}\eta} R\right)^{1/4}$
 - Kurkela, Wiedemann, Wu EPJC 79 (2019) 965
- energy weighted d.o.f.: dependence on IS only in energy density
- ▶ first study: simple initial energy density introducing only one eccentricity at a time



Analytical and numerical treatment

ightharpoonup typical values of $\hat{\gamma}$

■ min. bias pp:
$$\hat{\gamma} \approx 0.88 \left(\frac{\eta/s}{0.16}\right)^{-1} \left(\frac{R}{0.4\,\mathrm{fm}}\right)^{1/4} \left(\frac{\mathrm{d}E_{\perp}^{(0)}/\mathrm{d}\eta}{5\,\mathrm{GeV}}\right)^{1/4} \left(\frac{\nu_{\mathrm{eff}}}{40}\right)^{-1/4}$$

 \Rightarrow treat problem both analytically (for small $\hat{\gamma}$) and numerically

linearized analytical treatment

"opacity expansion" in number of scatterings

0th order:
$$p^{\mu}\partial_{\mu}f^{(0)} = 0$$
,
1st order: $p^{\mu}\partial_{\mu}f^{(1)} = C[f^{(0)}]$

Heiselberg, Levy PRC 59 (1999) 2716

Borghini, Gombeaud EPJC 71 (2011) 1612

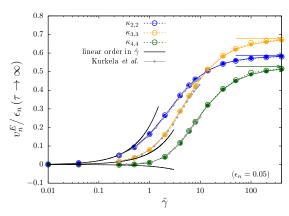
- lacktriangle expansion parameter $C_{\mathrm{RTA}}[f] \sim \hat{\gamma}$
- linearize also in eccentricity

numerical treatment

- nonlinear in both opacity and eccentricity
- Relativistic Lattice Boltzmann solver for energy-weighted d.o.f.

Ambrus, Blaga PRC 98 (2018) 035201

Opacity dependence of response coefficients

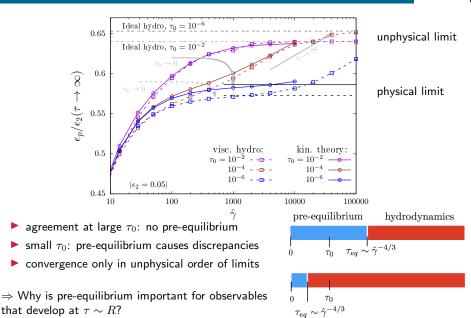


- ightharpoonup linearized results tangential to curve of numerical results at small $\hat{\gamma}$
- agreement with previous results

Kurkela, Taghavi, Wiedemann, Wu PLB 811 (2020) 135901

 \blacktriangleright saturation at large $\hat{\gamma}$, expectation: hydrodynamic behaviour

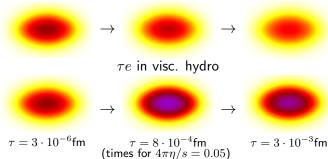
Comparison to Hydrodynamics



Early time longitudinal cooling

- $au \ll R$: only longitudinal expansion
 - local Bjorken flow cooling: follows universal attractor curve

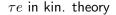
au e in kin. theory

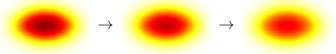


- ▶ dynamics depend on local energy density ⇒ inhomogeneous cooling
 - decrease of eccentricity before transverse flow develops

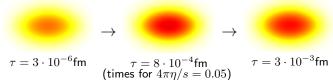
How to "fix" Hydro?

idea: counteract difference in pre-equilibrium by different hydro initialization





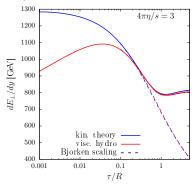
au e in visc. hydro, rescaled e_0

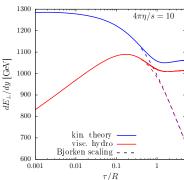


- ▶ more realistic initial condition: average profile (Pb+Pb 30-40%)
 - fixed profile: vary $\hat{\gamma}$ via η/s : $\hat{\gamma} \approx 11 \cdot (4\pi\eta/s)^{-1}$

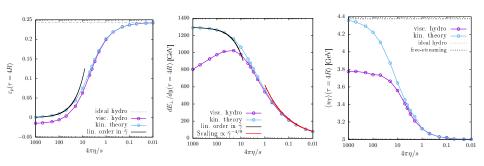
Initializing on the attractor

- initialize hydro on its attractor to match Bjorken flow cooling at late times
- accuracy depends on timescale separation of longitudinal cooling and transverse expansion





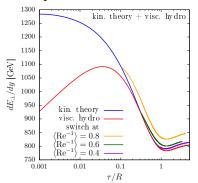
Comparison to rescaled Hydrodynamics

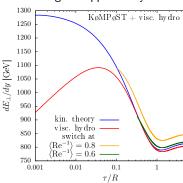


- when initialized on the attractor, observables in ideal hydro and viscous hydro agree perfectly with kinetic theory at large opacities
- hydrodynamics valid for $4\pi\eta/s\lesssim 3$ (for Pb+Pb 30-40%)

Hybrid schemes

- idea: evolve system in kinetic theory until $\langle {\rm Re}^{-1} \rangle$ drops to specific value, then match $T^{\mu\nu}$ to hydro code
- system immediately starts following similar evolution to a pure hydro run
 - switching too early causes errors in pre-equilibrium
 - results from late switching times more accurate than rescaled hydro
- works just as well with KøMPøST, but with limited range of applicability



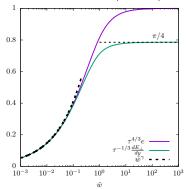


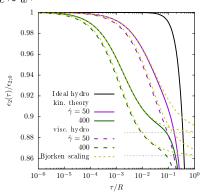
Summary

- kinetic theory description covers full range in opacity from small to large systems
- naive comparison to hydrodynamics: disagreement even at large opacities!
 - difference during pre-equilibrium
 - eccentricity decreases before onset of transverse expansion
- different setup of hydrodynamic simulations can bring agreement at large opacities
 - initializing hydrodynamics on its early-time attractor
 - hybrid models with kinetic theory for pre-equilibrium

Early time Bjorken scaling

- $au\ll R$: no transverse expansion, system locally behaves like 0+1D Bjorken flow
 - universal attractor curve scaling in the variable $\tilde{w}(\tau, \mathbf{x}_{\perp}) = \frac{T(\tau, \mathbf{x}_{\perp})\tau}{4\pi\eta/s}$ Giacalone, Mazeliauskas, Schlichting, PRI 123 (2019) 262301
 - $\tilde{w} \gg 1$: $\tau^{4/3}e = \text{const.}$, $\tau^{1/3}\frac{dE_{\perp}}{dv} = \text{const.}$
 - $\tilde{w} \ll 1$: model dependent power law $au^{4/3} e \sim \tilde{w}^{\gamma}$





inhomogeneous cooling changes energy density profile