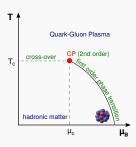
Intermittency analysis in NA61/SHINE:

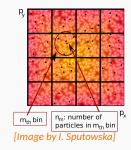
hunting for critical point signature in proton fluctuations

Nikolaos Davis



Institute of Nuclear Physics, P.A.S., Kraków, Poland for the NA61/SHINE Collaboration

4-10 April 2022, Kraków, Poland


Introduction Motivation & Methodology

- We look for experimental signatures of the critical point of strongly interacting matter in NA61/SHINE medium to large-size system (Be+Be, Ar+Sc, Xe+La, Pb+Pb) collisions at maximum collision energy available for the CERN SPS ($\sqrt{s_{NN}} = 17.3$ GeV).
- We consider **local observables** related to the **order parameter** of the **chiral phase transition**, the **chiral condensate** $\sigma(\mathbf{x}) = \langle \bar{q}(\mathbf{x})q(\mathbf{x}) \rangle$;
- At finite baryon density, the critical fluctuations of the chiral condensate are transferred to the net-baryon density [1]. For a critical system, we expect proton density fluctuations to obey power-laws with critical exponents determined by the 3D Ising universality class [2-4];
- Self-similar proton density fluctuations correspond to power-law scaling of the proton density-density correlation function in transverse momentum space.
- ► Intermittency analysis examines how Second Scaled Factorial Moments (SSFM) F₂(M) of proton transverse momenta scale with the number of 2D bins M² at mid-rapidity:

$$F_2(M) \equiv \left\langle \frac{1}{M^2} \sum_{i=1}^{M^2} n_i (n_i - 1) \right\rangle / \left\langle \frac{1}{M^2} \sum_{i=1}^{M^2} n_i \right\rangle^2 \tag{1}$$

where $\langle ... \rangle$ denotes average over events.

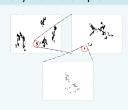
Analysis Results Experiment & Simulation

 $\Delta F_2(M)$

NAO1/SHINE Ar+Sc 15U, cent.1U-2U%, pur > VU%

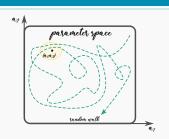
10

NA61/SHINE Ar+Sc 150, cent.10 - 20%, pur > 90% For a **pure critical system**, we predict ^[4]:

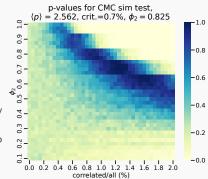

$$F_2(M) \sim M^{2 \cdot \phi_{2,cr}}$$
 , $\phi_{2,cr}^{(p)} = 5/6$ (2)

For a noisy system, mixed event moments must be subtracted from the data to reveal critical component [5]:

$$\Delta F_2(M) = F_2^{(d)}(M) - F_2^{(m)}(M)$$
 (3)


- Analysis of peripheral Ar+Sc collisions at 150A GeV/ $c^{[6]}$ reveals a non-trivial scaling effect; however, large uncertainties in $F_2(M)$ and M-bin error correlations [7] prevent an unbiased estimation of ϕ_2 confidence intervals: there must be a better way!
- Instead of fitting for ϕ_2 , it is preferable to model $F_2(M)$ using simulations such as the Critical Monte Carlo (CMC), [4] which simulate both critical and background components through Lévy (fractal) random walk (fig. right);
- A new computational technique [8] allows us to swiftly compute $F_2(M)$ for a large number of simulated events; subsequently, we can compare experimental and simulated $F_2(M)$ through a χ^2 goodness-of-fit test;
- Our Monte Carlos can simulate a wide range of power-law behaviors and critical levels, which we scan for the optimal agreement with experiment.

Lévy walk example



Monte Carlo scan and exclusion plot

- Given a Monte Carlo with a set of free parameters, a dedicated software ^[9, 10] randomly samples parameter space; each selected point corresponds to a model of the experimental data, which is then simulated and evaluated;
- The model can be as sophisticated as (realistically) possible; detector effects can be included;
- From each model/experiment comparison, a p-value is exctracted, which quantifies the probability that a set similar to the experimental one could have come from the model;
- Collecting p-values over a scan of models, we create an exclusion plot:
- We test the exclusion plot technique by giving our scan algorithm a simulated data set, e.g. created by CMC (fig. right);
- Regions with very low p-value can be considered to be "excluded"; we see in the example that the stronger the power-law, the larger the excluded region, particularly for strong critical component.

Conclusions & Bibliography

- Proton intermittency analysis is a promising tool for detecting the critical point of strongly interacting matter; however, the conventional method of performing intermittency cannot handle large uncertainties (due to small event statistics) and bin correlations present in the data;
- We have developed new techniques able to handle statistical and systematic uncertainties, based on Monte Carlo model simulation and weighting; along with the software tools that drive a wide scan in model parameter space;
- Evidence is still inconclusive as to the presence of intermittency in Ar+Sc collisions at 150A GeV/c;
- Creation of an exclusion plot for NA61/SHINE data, through a carefully calibrated Monte Carlo, is still in progress;
- Once available, such a result will allow us to estimate φ₂ and critical component confidence intervals;
- The new techniques can then be utilised in the study of other NA61/SHINE available systems (Pb+Pb, Xe+La).

Bibliography

- 1 Y. Hatta, M. A. Stephanov, Phys. Rev. Lett. 91, 102003 (2003).
- ² N. G. Antoniou et al., Nucl. Phys. A 693, 799-824 (2001).
- ³ N. G. Antoniou et al., Nucl. Phys. A **761**, 149–161 (2005).
- 4 N. G. Antoniou et al., Phys. Rev. Lett. 97, 032002 (2006).
- ⁵ T. Anticic et al., Eur. Phys. J. C **75**, 587 (2015).
- ⁶ N. Davis, Acta Phys. Polon. Supp. 13, 637–643 (2020).
- ⁷ N. G. Antoniou et al., Nucl. Phys. A 1003, 122018 (2020).
- 8 F. K. Diakonos, A. S. Kapoyannis, Eur. Phys. J. C 82, 200 (2022).
- 9 E. Stiliaris, C. N. Papanicolas, AIP Conf. Proc. 904, edited by C. N. Papanicolas, A. M. Bernstein, 257–268 (2007).
- ¹⁰C. N. Papanicolas, E. Stiliaris, arXiv 1205.6505 (2012).