Analytic continuation and the equation of state
Rescaling and expansion - the analysis
Results at $n_S = 0$ and $\mu_Q = 0$
Beyond strangeness neutrality

The equation of state form Lattice QCD with finite μ_B and μ_S

Szabolcs Borsanyi, Zoltan Fodor, Jana N. Guenther, Ruben Kara, Paolo Parotto, Attila Pasztor, Claudia Ratti and Kalman K. Szabo

Avril 6th 2022
1. Analytic continuation and the equation of state

2. Rescaling and expansion - the analysis

3. Results at $n_S = 0$ and $\mu_Q = 0$

4. Beyond strangeness neutrality
1. Analytic continuation and the equation of state

2. Rescaling and expansion - the analysis

3. Results at $n_S = 0$ and $\mu_Q = 0$

4. Beyond strangeness neutrality
The sign problem

The QCD partition function:

$$Z(V, T, \mu) = \int \mathcal{D}U \mathcal{D}\psi \mathcal{D}\bar{\psi} e^{-S_F(U, \psi, \bar{\psi}) - \beta S_G(U)}$$

$$= \int \mathcal{D}U \text{det} M(U) e^{-\beta S_G(U)}$$

- For Monte Carlo simulations $\text{det} M(U) e^{-\beta S_G(U)}$ is interpreted as Boltzmann weight
- If there is particle-antiparticle-symmetry $\text{det} M(U)$ is real
- If $\mu^2 > 0 \text{det} M(U)$ is complex
Analytic continuation from imaginary chemical potential

Common technique:
- [deForcrand:2002hgr]
- [Bonati:2015bha]
- [Cea:2015cya]
- [DElia:2016jqh]
- [Bonati:2018nut]
- [Borsanyi:2018grb]
- [Borsanyi:2020fev]
- [Bellwied:2021nrt]
- ...
Trouble with the equation of state

[Borsanyi:2021sxv], [Borsanyi:2018grb], $N_t = 12$
Trouble with the equation of state

[Borsanyi:2021sxv], [Borsanyi:2018grb], $N_t = 12$

Taylor method

[Bazavov:2017dus]

[Bollweg:2022rps]
Trouble with the equation of state

[Borsanyi:2021sxv]

Taylor method

[Bazavov:2017dus]

[Bollweg:2022rps]
Trouble with the equation of state

Taylor method

[Bazavov:2017dus]

[Borsanyi:2021sxv]

[Bollweg:2022rps]
Results at $\mu_S = 0$

Find a different extrapolation scheme for extrapolating to higher μ_B.

- [Borsanyi:2021sxv]
- $N_t = 10, 12, 16$
1. Analytic continuation and the equation of state

2. Rescaling and expansion - the analysis

3. Results at $n_S = 0$ and $\mu_Q = 0$

4. Beyond strangeness neutrality
Strangeness Neutrality

Enforcing the conditions $\mu_Q = 0$ and $\chi_1^S = 0$:

$$\frac{d\mu_S}{d\mu_B} = -\frac{\chi_{11}^{BS}}{\chi_2^S}.$$

On this line, total derivatives with respect to the baryochemical potential read

$$\frac{d}{d\hat{\mu}_B} = \frac{\partial}{\partial \hat{\mu}_B} + \frac{d\hat{\mu}_S}{d\hat{\mu}_B} \frac{\partial}{\partial \hat{\mu}_S} = \frac{\partial}{\partial \hat{\mu}_B} - \frac{\chi_{11}^{BS}}{\chi_2^S} \frac{\partial}{\partial \hat{\mu}_S}. $$

For the pressure we get:

$$c^n_B(T, \hat{\mu}_B) \equiv \left. \frac{dn(\hat{\mu}_B)}{d\hat{\mu}_B} \right\|_{\mu_Q=0}^{\chi_1^S=0}. $$

The net baryon density is given by:

$$c_1^B(T, \hat{\mu}_B) = \chi_1^B - \frac{\chi_{11}^{BS}}{\chi_2^S} \chi_1^S = \chi_1^B.$$
This rescaling will break down at large $T \rightarrow$ rescaling with SBL
This rescaling will break down at large \(T \rightarrow \) rescaling with SBL
Why does the rescaling work?

- It is an observation that it works
- It could be related to the critical scaling in the chiral limit
- If the universal contribution to EoS is large \rightarrow single scaling variable
- If strength of transition is strongly influenced by light quark masses \rightarrow curves keep their shape
- Fits with the observation of constant width of the transition

![Graph showing crossover and physical point]
Measuring the shift

\[\frac{c_1^B(T, \hat{\mu}_B)}{c_1^B(\hat{\mu}_B)} \]

- **lattice**: \(48^3 \times 12 \)
- **Spline**
- **measured difference**
- **data**

\[\hat{\mu}_B = \frac{0\pi}{8} \]
\[\hat{\mu}_B = \frac{4\pi}{8} \]
\[\hat{\mu}_B = \frac{6\pi}{8} \]

- \(c_1^B \): net baryon density
- \(\overline{c_1^B} \): SBL of net baryon density

\[\Pi(T, \hat{\mu}_B, N_T) = \frac{T'(T, \hat{\mu}_B, N) - T}{T \hat{\mu}_B} \]
Analytic continuation and the equation of state

Rescaling and expansion - the analysis

Results at $n_S = 0$ and $\mu_Q = 0$

Beyond strangeness neutrality

Measuring the shift

c_B^1: net baryon density

$\overline{c_B^1}$: SBL of net baryon density

$$\Pi(T, \hat{\mu}_B, N_\tau) = \frac{T'(T, \hat{\mu}_B, N) - T}{T \hat{\mu}_B}$$
Measuring the shift

\[\frac{c_1^B(T, \hat{\mu}_B)}{c_1^B(\hat{\mu}_B)} \]

- **lattice**: $48^3 \times 12$

\[\Pi(T, \hat{\mu}_B, N) = \frac{T'(T, \hat{\mu}_B, N) - T}{T \hat{\mu}_B} \]

- c_1^B: net baryon density
- $\overline{c_1^B}$: SBL of net baryon density
Measuring the shift

\[c_1^B : \text{net baryon density} \]

\[\overline{c_1^B} : \text{SBL of net baryon density} \]

\[\Pi(T, \hat{\mu}_B, N_\tau) = \frac{T'(T, \hat{\mu}_B, N) - T}{T \hat{\mu}_B} \]
Measuring the shift

- μ_B: net baryon density
- $\overline{c_1 B}$: SBL of net baryon density

$$\Pi(T, \hat{\mu}_B, N_\tau) = \frac{T'(T, \hat{\mu}_B, N) - T}{T \hat{\mu}_B}$$
Measuring the shift

c_B^B: net baryon density

$\overline{c_B^B}$: SBL of net baryon density

$$
\Pi(T, \hat{\mu}_B, N_\tau) = \frac{T'(T, \hat{\mu}_B, N) - T}{T \hat{\mu}_B}
$$
Measuring the shift

\[c_1^B: \text{net baryon density}\]

\[\overline{c_1^B}: \text{SBL of net baryon density}\]

\[\Pi(T, \hat{\mu}_B, N_T) = \frac{T'(T, \hat{\mu}_B, N) - T}{T \hat{\mu}_B}\]
Analytic continuation and the equation of state

Rescaling and expansion - the analysis

Results at $n_S = 0$ and $\mu_Q = 0$

Beyond strangeness neutrality

Measuring the shift

c_1^B: net baryon density

$\overline{c_1^B}$: SBL of net baryon density

$$\Pi(T, \hat{\mu}_B, N_T) = \frac{T'(T, \hat{\mu}_B, N) - T}{T \hat{\mu}_B}$$
Lattice Setup

- Action: tree-level Symanzik improved gauge action, with four times stout smeared staggered fermions
- 2+1+1 flavour, on LCP with pion and kaon mass
- Simulation at $\langle n_S \rangle = 0$
- Continuum estimate from lattice sizes: $32^3 \times 8$, $40^3 \times 10$, $48^3 \times 12$ and $64^3 \times 16$
- $\mu_B T = i \frac{j \pi}{8}$ with $j = 0, 3, 4, 5, (5.5), 6$ and 6.5
- Two methods of scale setting: f_π and w_0, $L m_\pi > 4$
Systematic Errors

- 3 different sets of spline node points at \(\mu_B = 0 \)
- 2 different sets of spline node points at finite imaginary \(\mu_B \)
- \(\omega_0 \) or \(f_\pi \) based scale setting
- 2 different chemical potential ranges in the global fit: \(\hat{\mu}_B \leq 5.5 \) or \(\hat{\mu}_B \leq 6.5 \)
- 2 functions for the chemical potential dependence of the global fit: linear or parabola
- including the coarsest lattice, \(N_\tau = 8 \), or not, in the continuum extrapolation.

In total we perform 96 Fits. We weight every result with a \(Q > 0.01 \) uniformly.
The expansion coefficients

\[\Pi(T, \hat{\mu}_B, N_T) = \frac{T'(T, \hat{\mu}_B, N) - T}{T \hat{\mu}_B} \]

\[\Pi(T, \hat{\mu}_B, N_T) = \lambda_2^A + \lambda_4^A \hat{\mu}_B^2 + \lambda_6^A \hat{\mu}_B^4 \]

\[+ \frac{1}{N_T^2} (\alpha^A + \beta^A \hat{\mu}_B^2 + \gamma^A \hat{\mu}_B^4) \]

We make a fit to calculate derivatives and constrain it with the HRG.
Analytic continuation and the equation of state

Rescaling and expansion - the analysis

Results at $n_S = 0$ and $\mu_Q = 0$

Beyond strangeness neutrality
Results at $n_S = 0$ and $\mu_Q = 0$
1 Analytic continuation and the equation of state

2 Rescaling and expansion - the analysis

3 Results at $n_S = 0$ and $\mu_Q = 0$

4 Beyond strangeness neutrality
More strangeness

Two more observables:

\[\hat{\mu}_B = i \frac{6\pi}{8} \]
\[\hat{\mu}_B = i \frac{5\pi}{8} \]
\[\hat{\mu}_B = i \frac{4\pi}{8} \]
\[\hat{\mu}_B = i \frac{3\pi}{8} \]
\[\hat{\mu}_B = 0 \]
More strangeness

Two more expansion:
Beyond strangeness neutrality

\[\Delta \hat{\mu}_S \equiv \hat{\mu}_S - \hat{\mu}_S^* , \]

the dimensionless strangeness and baryon densities become:

\[\chi_S^1(\hat{\mu}_S) \approx \chi_S^2(\hat{\mu}_S^*) \Delta \hat{\mu}_S \]

\[\chi_B^1(\hat{\mu}_S) \approx \chi_B^1(\hat{\mu}_S^*) + \chi_{11}^{BS}(\hat{\mu}_S^*) \Delta \hat{\mu}_S, \]

where we only kept the linear leading order terms in \(\Delta \hat{\mu}_S \). We will express thermodynamic quantities in terms of the strangeness-to-baryon fraction:

\[R = \frac{\chi_S^1}{\chi_B^1} = \frac{\chi_S^2(\hat{\mu}_S^*) \Delta \hat{\mu}_S}{\chi_B^1(\hat{\mu}_S^*) \Delta \hat{\mu}_S + \chi_{11}^{BS}(\hat{\mu}_S^*)}. \]

Inverting this equation we get:

\[\Delta \hat{\mu}_S = \frac{R \chi_B^1(\hat{\mu}_S^*)}{\chi_S^2(\hat{\mu}_S^*) - R \chi_{11}^{BS}(\hat{\mu}_S^*)}. \]
Beyond strangeness neutrality

\[\Delta \hat{\mu}_S = \frac{R \hat{\chi}_1^B(\hat{\mu}_S^*)}{\hat{\chi}_2^S(\hat{\mu}_S^*) - R \hat{\chi}_1^{BS}(\hat{\mu}_S^*)} \]

\[R = \frac{\chi_S^1}{\chi_B^1} \]
Analytic continuation and the equation of state

Rescaling and expansion - the analysis

Results at \(n_S = 0 \) and \(\mu_Q = 0 \)

Beyond strangeness neutrality

Strange Baryon density

Expanding the baryon density:

\[
\frac{\chi_B^1(T, \hat{\mu}_B, R)}{\chi_B^1(T, \hat{\mu}_B, R = 0)} \approx 1 + R \frac{\chi_{BS}^1(T, \hat{\mu}_B, R = 0)}{\chi_S^2(T, \hat{\mu}_B, R = 0)}
\]

where all quantities on the right hand side are along the strangeness neutral line.
At the strangeness neutral line the $O(R)$ correction of the pressure vanishes. The leading order correction gives:

$$\hat{p}(T, \hat{\mu}_B, R) \approx \hat{p}(T, \hat{\mu}_B, R) + \frac{1}{2} \frac{d^2\hat{p}}{dR^2}(T, \hat{\mu}_B) R^2,$$

where

$$\frac{d^2\hat{p}}{dR^2}(T, \hat{\mu}_B) = \frac{(\chi_1^B(T, \hat{\mu}_B))^2}{\chi_2^S(T, \hat{\mu}_B)}.$$
Analytic continuation and the equation of state
Rescaling and expansion - the analysis
Results at $n_S = 0$ and $\mu_Q = 0$
Beyond strangeness neutrality

Summary
Analytic continuation and the equation of state
Rescaling and expansion - the analysis
Results at $n_S = 0$ and $\mu_Q = 0$
Beyond strangeness neutrality
Analytic continuation and the equation of state

Rescaling and expansion - the analysis

Results at $n_S = 0$ and $\mu_Q = 0$

Beyond strangeness neutrality

μ_Q

![Graph showing μ_Q vs. T with data points and error bars]
Analytic continuation and the equation of state

Rescaling and expansion - the analysis

Results at $n_S = 0$ and $\mu_Q = 0$

Beyond strangeness neutrality

k vs. λ

![Graph showing $\lambda^2(T)$ at $N_t=12$ and $\kappa^2(T)$ at $N_t=12$ vs. T in MeV. The graph includes error bars.](image-url)
Thermodynamics

\[
\frac{p(T, \mu_B)}{T^4} = \frac{p(T, 0)}{T^4} + \int_0^{\mu_B} c_1^B(T, \mu_B') d\mu_B',
\]

with

\[
c_1^B(T, \mu_B) = c_2^B(T', 0) \frac{c_1^B(\mu_B)}{c_2^B(0)},
\]

and \(\frac{p(T, 0)}{T^4}\) from [Borsanyi:2013bia] The entropy density is defined as

\[
s = \left. \frac{\partial p}{\partial T} \right|_{\mu_B, \mu_S},
\]

which can be rewritten in terms of dimensionless quantities as:

\[
\hat{s} = 4\hat{\rho} + T \frac{\partial \hat{\rho}}{\partial T} \bigg|_{\mu_B} = 4\hat{\rho} + T \frac{\partial \hat{\rho}}{\partial T} \bigg|_{\mu_B} - \hat{\mu}_B \chi_1^B,
\]

where \(\hat{s} \equiv \frac{s}{T^3}\) and we took into account the difference between derivatives at fixed \(\mu_B\) versus at fixed \(\mu_B\).
By noticing that on the strangeness neutral line

\[
\frac{d\hat{p}(T, \hat{\mu}_B, \hat{\mu}_S(T, \hat{\mu}_B))}{dT} = \chi_1 \frac{\partial \hat{\mu}_S}{\partial T} + \frac{\partial \hat{p}}{\partial T} = \frac{\partial \hat{p}(T, \hat{\mu}_B, \hat{\mu}_S(T, \hat{\mu}_B))}{\partial T},
\]

we can write the logarithmic temperature derivative of the pressure as:

\[
T \left. \frac{\partial \hat{p}(T, \hat{\mu}_B)}{\partial T} \right|_{\hat{\mu}} = T \left. \frac{\partial \hat{p}(T, 0)}{\partial T} \right|_{\hat{\mu}}
\]

\[
+ \frac{1}{2} \int_0^{\hat{\mu}_B^2} T \left. \frac{dc_2^B(T', 0)}{dT'} \right|_{T'} \times \left[1 + \lambda_2^{BB} y + \lambda_4^{BB} y^2 + T \left(\frac{d\lambda_2^{BB}}{dT} y + \frac{d\lambda_4^{BB}}{dT} y^2 \right) \right] dy
\]

where \(\frac{dc_2^B(T)}{dT} \) is calculated at \(\mu_B = 0 \) and \(T' = T (1 + \lambda_2^{BB} y + \lambda_4^{BB} y^2) \)

Given the pressure and the entropy, the dimensionless energy density is given by:

\[
\hat{\epsilon} = \hat{s} - \hat{p} + \hat{\mu}_B \chi_1^B,
\]

where \(\hat{\epsilon} = \frac{\epsilon}{T^4} \).