Equation of State of (2+1)-flavor QCD: An update based on high precision Taylor expansion results

D. Bollweg1, F. Karsch2, A. Lahiri2, S. Mukherjee3, P. Petreczky3

Quark Matter 2022

1Columbia University

2Bielefeld University

3Brookhaven National Lab

Krakow/ZOOM, 06.04.2022

Based on [arXiv:2202.09184] and forthcoming
1 Motivation

2 Computational approach

3 Equation of state at $\mu_Q = \mu_S = 0$ and $n_Q/n_B = 0.4, n_S = 0$

4 Outlook
Bulk thermodynamic properties (Energy density ϵ, Pressure p, Entropy density s, number densities n, ...) of QCD are fundamental inputs for wide range of phenomena (HIC, early universe, compact stars, ...)

Perturbative approaches face challenges.

Widely used Hadron Resonance Gas shows deviations from QCD even below T_{pc} already in second order susceptibilities. [arxiv: 2107.10011]

Non-perturbative, first-principle determination of QCD Equation of State necessary.
Equation of State at $\mu = 0$

- EoS at $\bar{\mu} = 0$ is accessed via trace anomaly $\Theta^{\mu\mu}$:

$$\frac{\Theta^{\mu\mu}(T)}{T^4} = -\frac{1}{VT^3} \frac{d \ln Z}{d \ln a} = \frac{\epsilon - 3p}{T^4} = T \frac{d}{dT} \left(\frac{p}{T^4} \right).$$

- Integral method yields pressure:

$$\frac{p(T)}{T^4} = \frac{p_0}{T^4} + \int_{T_0}^T dT' \frac{\Theta^{\mu\mu}(T')}{T^5}.$$

- “Solved” problem for (2+1)-flavor lattice QCD.

Figure: EoS calculated by WB (grey) and HotQCD (color) [arxiv:1407.6387]
Finite Density sign problem prevents direct simulations.

“Production ready” approaches to reach $\mu > 0$:

- Analytical continuation from $\mu^2 < 0$ (see talk by Jana Günther).
- Taylor expansion around $\mu = 0$:

\[
\frac{p(T, \mu)}{T^4} = \sum_{i,j,k=0}^{i,j,k} \frac{\chi_{ijk}^{BQS}(T)}{i!j!k!} \hat{\mu}_B^i \hat{\mu}_Q^j \hat{\mu}_S^k, \quad \hat{x} = \frac{\mu_x}{T},
\]

\[
\chi_{ijk}^{BQS}(T) = \frac{1}{VT^3} \left. \frac{\partial^{i+j+k} \ln Z}{\partial \hat{\mu}_B^i \partial \hat{\mu}_Q^j \partial \hat{\mu}_S^k} \right|_{\vec{\mu} = 0}.
\]
μ dependence of ϵ and s are extracted from expansion of trace anomaly:

\[
\frac{\epsilon - 3p}{T^4} = T \frac{\partial p/T^4}{\partial T} = \sum_{i,j,k=0}^{\Xi_{BQS}(T)} \frac{\Xi_{BQS}(T)}{i!j!k!} \hat{\mu}_B \hat{\mu}_Q \hat{\mu}_S, \quad \Xi_{BQS}(T) = T \frac{\partial \chi_{i,j,k}^{BQS}(T)}{\partial T},
\]

\[
\frac{\epsilon}{T^3} = \sum_{i,j,k=0}^{\Xi_{BQS}(T)} \frac{\Xi_{BQS}(T)}{i!j!k!} \hat{\mu}_B \hat{\mu}_Q \hat{\mu}_S;
\]

\[
\frac{s}{T^3} = \sum_{i,j,k=0}^{\Xi_{BQS}(T)} \frac{\Xi_{BQS}(T) + (4 - i - j - k)\chi_{i,j,k}^{BQS}(T)}{i!j!k!} \hat{\mu}_B \hat{\mu}_Q \hat{\mu}_S.
\]
Equation of State at $\mu > 0$

Constrain Taylor expansion to lines parameterized by μ_B:

\[
\frac{\Delta p}{T^4} = \sum_n P_{2n}\hat{\mu}_B^{2n}, \quad \frac{n_B}{T^3} = \sum_n N_{2n-1}\hat{\mu}_B^{2n-1},
\]

\[
\frac{\Delta \epsilon}{T^3} = \sum_n \epsilon_{2n}\hat{\mu}_B^{2n}, \quad \frac{\Delta \sigma}{T^3} = \sum_n \sigma_{2n}\hat{\mu}_B^{2n}.
\]

- Simplest case: $\mu_Q = \mu_S = 0 \rightarrow$ EoS can be calculated from diagonal χ_{2n}^B's alone ($P_{2n} \sim N_{2n-1} \sim \chi_{2n}^B$).
- Heavy Ion Collision case: $n_Q/n_B = 0.4$, $n_S = 0 \rightarrow$ express μ_Q and μ_S via baryon chemical potential μ_B and fulfill constraints order by order.

\[
\hat{\mu}_Q = q_1(T)\hat{\mu}_B + q_3(T)\hat{\mu}_B^3 + q_5(T)\hat{\mu}_B^5 + \cdots,
\]

\[
\hat{\mu}_S = s_1(T)\hat{\mu}_B + s_3(T)\hat{\mu}_B^3 + s_5(T)\hat{\mu}_B^5 + \cdots,
\]

EoS then involves off-diagonal χ_{ijk}^{BQS}'s as well.
Generalized Susceptibilities via lattice QCD

\[\chi_{ijk}^{BQS} \equiv \frac{1}{VT^3} \frac{\partial^i + j + k}{\partial \hat{\mu}_B \partial \hat{\mu}_Q \partial \hat{\mu}_S} \log Z \quad \hat{\mu}_X \equiv \frac{\mu_X}{T} \]

To compute \(\chi_{ijk}^{BQS} \), we need to solve integrals of the form

\[
\frac{1}{Z} \int \prod_{x,\nu} dU_{x,\nu} \text{Tr} \left(M_f^{-1} M'_f \cdots \right) e^{-S_{\text{eff}}}.
\]

These are calculated via Markov-Chain Monte-Carlo:

1. Generate \(\{U_{x,\nu}\} \)-ensembles via RHMC algorithm\(^1\).

2. Evaluate \(\text{Tr} \left(M_f^{-1} M'_f \cdots \right) \) on \(\{U_{x,\nu}\} \)-ensembles using random noise method:

 \[
 \text{Tr} \left(\hat{M}_f \right) \sim \frac{1}{N} \sum_{i=0}^{N} \eta_i^* \hat{M}_f \eta_i. \quad \rightarrow \text{Sparse matrix inversions with 500-2000 right-hand sides } \eta_i \text{ for each trace. (Optimizations: Multi-RHS CG + TR-Lanczos with spectrum filter)}
 \]

\(^1\)https://github.com/LatticeQCD/SIMULATeQCD
Dynamical Fermions (HISQ) with $N_f = 2 + 1$, physical quark masses ($\frac{m_s}{m_l} = 27$), $T \in [135, 175]$ MeV and lattice sizes $N_\tau = 6, 8, 12, 16, N_\sigma = 4N_\tau$.

For Temperatures $T > 180$ MeV: $\frac{m_s}{m_l} = 20$ and $N_\tau = 6, 8, 12^2$.

2Only lowest orders available for $N_\tau = 12$ at $T > 180$ MeV
Continuum extrapolation strategy

- For $\mu_Q = \mu_S = 0$ and isospin symmetric data analysis details: Talk by Jishnu Goswami & [arxiv:2202.09184].
- For $n_Q/n_B = 0.4$: need continuum extrapolations of $P_{2n}(T)$, $N_{2n-1}(T)$, $q_{2n-1}(T)$ and their T-derivatives.
- Errors in data points at individual T and N_τ are normally distributed and independent.
- Fit $P_{2n}(T)$, $N_{2n-1}(T)$, $q_{2n-1}(T)$ on each bootstrap sample generated from joint $N_\tau = 6, 8, 12, 16^3$ data set using $1/N_\tau^2$ corrections.
- Error bands are given by 1σ spread of bootstrap values at given T.

3rd order: $N_\tau = 6, 8, 12$, 6th order: $N_\tau = 8$ fit, 8th order $N_\tau = 8$ spline
Continuum extrapolations: P_{2n} for $n_Q/n_B = 0.4$, $n_S = 0$ (preliminary)
Equation of State for $\mu_Q = \mu_S = 0$

- Better control over $O(\mu_B^6)$ significantly reduces spurious “wiggles” at high μ_B/T.

EoS 2017 (top) vs 2022 (bottom)
Equation of State for $n_Q/n_B = 0.4, n_S = 0$ (preliminary)

Better control over $O(\mu_B^6)$ significantly reduces spurious “wiggles” at high μ_B/T.

EoS 2017 (top) vs 2022 (bottom)
Equation of State for $n_Q/n_B = 0.4, n_S = 0$ (preliminary)

$O(\mu_B^6)$ coefficients that contain derivatives (ϵ_6, σ_6) remain hard to compute!

Smaller range of reliability compared to P and n_B at $O(\mu_B^6)$.
Summary & Outlook

- Multi-year computation campaign generating high statistics data set of (2+1)-flavor HISQ configurations.
- Extension of Equation of State Taylor expansion coefficients up to 8th order.
- Significantly improved control over 6th order coefficients removes spurious “wiggles” of earlier study.
- No evidence for a breakdown of convergence of the Taylor Series for $\mu_B/T < 2.5$ in the entire temperature range explored in this study.

Upcoming:

- Taylor series resummation using Pade method (see talk by Jishnu Goswami).
- Updated parametrization of Equation of State for strangeness neutral systems.
- Updated calculations of isothermal & isoentropic speed-of-sound.