ANOMALOUS ELECTROMAGNETIC MOMENTS OF τ LEPTON
FROM $\gamma\gamma \rightarrow \tau^+\tau^-$ PROCESSES
IN ULTRAPHIPHERAL Pb+Pb COLLISIONS AT THE LHC

Mariola Klusek-Gawenda
Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland

✓ M. Dyndał, M. K-G, M. Schott and A. Szczurek,
Anomalous electromagnetic moments of τ lepton in $\gamma\gamma \rightarrow \tau^+\tau^-$ reaction in Pb+Pb collisions at the LHC,
UPC of heavy ions provide a very clean environment to study two-photon induced processes.

Study $Pb + Pb \rightarrow Pb + Pb + \tau^+\tau^-$ at the LHC.

The presence of $\gamma\tau\tau$ vertex (twice) gives sensitivity to anomalous (a_τ) and electric (d_τ) moments.

So far the strongest experimental constraints on a_τ comes from DELPHI (LEP2) measurement on $e^+e^- \rightarrow e^+e^-\tau^+\tau^-$.

- $-0.052 < a_\tau^{\text{exp}} < 0.013$

The theoretical Standard Model value is $a_\tau^{\text{th}} = 0.00117721 \pm 0.00000005$.

Physics beyond the Standard Model (BSM):

- lepton compositeness,
- TeV-scale leptoquarks,
- left-right symmetric models,
- unparticle physics,

a_τ can be $(m_\tau/m_\mu)^2$ times more sensitive than a_μ.

Many interesting proposals how to improve experimental sensitivity on a_τ and d_τ using lepton beams.
THEORETICAL FRAMEWORK

Nuclear cross section in UPC:

\[
\sigma (PbPb \rightarrow PbPb\ell^+\ell^-; \sqrt{s_{AA}}) = \int \sigma (\gamma\gamma \rightarrow \ell^+\ell^-; W_{\gamma\gamma}) N(\omega_1, b_1)N(\omega_2, b_2) S_{abs}^2(b) \frac{W_{\gamma\gamma}}{2} dW_{\gamma\gamma} dY_{\ell^+\ell^-} d\bar{b}_x d\bar{b}_y d^2b \quad (1)
\]

Differential elementary cross section

\[
\frac{d\sigma(\gamma\gamma \rightarrow \ell^+\ell^-)}{d \cos \theta} = \frac{2\pi}{64\pi^2 s} \frac{p_{out}}{p_{in}} \frac{1}{4} \sum_{\text{spin}} |\mathcal{M}|^2 . \quad (2)
\]

The amplitude for the \(t \) - and \(u \)-channel

\[
\mathcal{M} = (-i) \epsilon_{1\mu} \epsilon_{2\nu} \bar{u}(p_3) \left(i\Gamma(\gamma\ell^+\ell^-) \mu(p_3, p_t) \frac{i(p_t + m_\ell)}{t - m_\ell^2 + i\epsilon} i\Gamma(\gamma\ell^+\ell^-) \nu(p_t' - p_4)
\right.

\[
+ i\Gamma(\gamma\ell^+\ell^-) \nu(p_3, p_u) \frac{i(p_u + m_\ell)}{u - m_\ell^2 + i\epsilon} i\Gamma(\gamma\ell^+\ell^-) \mu(p_u' - p_4) \bigg) v(p_4). \quad (3)
\]

Photon-lepton vertex function as a function of momentum transfer \((q = p' - p)\)

\[
i\Gamma_\mu(\gamma\ell^+\ell^-)(p', p) = -i\epsilon \left[\gamma_\mu F_1(q^2) + \frac{i}{2m_\ell} \sigma_{\mu\nu} q^\nu F_2(q^2) + \frac{i}{2m_\ell} \gamma^5 \sigma_{\mu\nu} q^\nu F_3(q^2) \right], \quad (4)
\]

\(\Rightarrow \) Dirac form factor \(\Rightarrow \) Pauli form factor \(\Rightarrow \) electric dipole form factor

\[
F_1(0) = 1 \quad F_2(0) = a_\ell \quad F_3(0) = d_\ell \frac{2m_\ell}{e}.
\]
Elementary Cross Section, a_τ Dependence

![Graphs showing $\sigma(\gamma\gamma \rightarrow \tau^+\tau^-)$ and $d\sigma(\gamma\gamma \rightarrow \tau^+\tau^-)/dz$ as functions of W and z, respectively.]

- As a function of energy...
- As a function of $\cos \theta$ for $W = 15$ GeV...

$\gamma\gamma \rightarrow \tau^+\tau^-$ STRONGLY DEPENDS ON a_τ
Nuclear cross section, a_τ dependence

Ratio of the total nuclear cross sections for Pb+Pb→Pb+Pb\(\tau\tau\) production @ LHC as a function of a_τ, relative to SM ($a_\tau = 0$).

FOR $|a_\tau| < 0.1$

Relatively small dependence on $p_{t,\tau}$

Comparison of SM results with STARlight

D\(\text{DIFFERENCE} \approx 20\%\);

Modeling of photon fluxes and absorption factor
Fiducial selection and τ decays

- Tau is the heaviest lepton with a lifetime of 3×10^{-13} s
- Tau can decay into lighter leptons (electron or muon) or hadrons (mainly pions and kaons)
- Tau decay channels produce:
 - one charged particle (denoted as 1ch, or one-prong) $\approx 80\%$
 $$\tau \rightarrow \nu_{\tau} + \ell + \nu_{\ell} \ (\ell = e, \mu)$$
 $$\tau \rightarrow \nu_{\tau} + \pi^\pm + n\pi^0$$
 - three charged particles (denoted as 3ch, or three-prong) $\approx 20\%$
 $$\tau \rightarrow \nu_{\tau} + \pi^\pm + \pi^\mp + \pi^\pm + n\pi^0$$

Selection requirements of the $\gamma\gamma \rightarrow \tau^+ \tau^-$ candidates events:

- at least one τ decays leptonically
- the leading lepton has $p_{t,e/\mu} > 4$ GeV & $|\eta| < 2.5$
- τ lepton pairs have low $p_{t} \rightarrow$ identification tools are not applicable \rightarrow all charged-particle tracks from $\tau_{1\text{ch}}$ or $\tau_{3\text{ch}}$: $p_T > 0.2$ GeV & $|\eta| < 2.5$
- condition on lepton-track system: $p_{T,\ell,1\text{ch}} > 1$ GeV for $\tau_{\ell}\tau_{1\text{ch}}$ category to suppress e^+e^- & $\mu^+\mu^-$ bkg

Selection for ATLAS & CMS detectors
Fiducial cross section for SM scenario

... as a function of p_T of the lepton+track system ($p_T^{\ell\text{ch}}$) in the $\tau^\ell\tau_{1\text{ch}}$ category

$p_T^{\ell\text{ch}} > 1$ GeV ($\approx 90\%$ of signal events)

TO SUPPRESS $\gamma\gamma \rightarrow \mu^+\mu^- / e^+e^-$ BKG

... as a function of p_T of the leading lepton for various event categories
Fiducial cross section for various a_τ values

.. as a function of p_T of the leading lepton for all event categories summed together

Predictions for current LHC Pb+Pb dataset and expected HL-LHC dataset

<table>
<thead>
<tr>
<th>a_τ value</th>
<th>σ_{fid} [nb]</th>
<th>Expected events ($L_{int} = 2$ nb$^{-1}$, $C = 0.8$)</th>
<th>Expected events ($L_{int} = 20$ nb$^{-1}$, $C = 0.8$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>−0.1</td>
<td>4770</td>
<td>7650</td>
<td>76 500</td>
</tr>
<tr>
<td>−0.05</td>
<td>3330</td>
<td>5350</td>
<td>53 500</td>
</tr>
<tr>
<td>−0.02</td>
<td>3060</td>
<td>4900</td>
<td>49 000</td>
</tr>
<tr>
<td>0 (SM)</td>
<td>3145</td>
<td>5050</td>
<td>50 500</td>
</tr>
<tr>
<td>+0.02</td>
<td>3445</td>
<td>5500</td>
<td>55 000</td>
</tr>
<tr>
<td>+0.05</td>
<td>4350</td>
<td>6950</td>
<td>69 500</td>
</tr>
<tr>
<td>+0.1</td>
<td>7225</td>
<td>11550</td>
<td>115 500</td>
</tr>
</tbody>
</table>
Ratio between \(\gamma \gamma \rightarrow \tau^+ \tau^- \) **and** \(\gamma \gamma \rightarrow \ell^+ \ell^- \)

... as a function of \(p_T \) of the leading lepton for all event categories summed together

Fiducial cross section &

Results with extra \(m_{\ell \ell} \) **shape reweighting**
Expected signal significance as a function of a_τ

For various assumptions on Pb+Pb integrated luminosity and total systematic uncertainty.

Assuming 2 nb$^{-1}$ of integrated Pb+Pb luminosity and 5% systematic uncertainty:

$$-0.021 < a_\tau^{\text{expected}} < 0.017$$

1 DELPHI limits: $-0.052 < a_\tau^{\text{exp}} < 0.013$
Electric Dipole Moment

EXPECTED
Including 95% CL sensitivity on $|d_\tau|$ and assuming $a_\tau = 0$:
- at the LHC with 5% systematic uncertainty
 \[|d_\tau| < 6.3 \cdot 10^{-17} \text{ e} \cdot \text{cm} \]
- at the LHC with 1% systematic uncertainty
 \[|d_\tau| < 4.4 \cdot 10^{-17} \text{ e} \cdot \text{cm} \]
- at HL-LHC with 1% systematic uncertainty
 \[|d_\tau| < 3.5 \cdot 10^{-17} \text{ e} \cdot \text{cm} \]

The **CURRENT** best limits are measured by Belle experiment:

\[-2.2 < Re(d_\tau) < 4.5 \left(10^{-17} \text{ e} \cdot \text{cm}\right) \]
and
\[-2.5 < Im(d_\tau) < 0.8 \left(10^{-17} \text{ e} \cdot \text{cm}\right) \]

Our results on d_τ can be therefore competitive with Belle limits
CONCLUSION

- We have used UPC calculation for $Pb + Pb \rightarrow Pb + Pb + \tau^+\tau^-$;
- We have studied the dependence of the $\gamma\gamma \rightarrow \tau^+\tau^-$ on a_τ;
- All channels with at least one leading lepton have been accepted;
- We suggest to measure the ratio of
 $\gamma\gamma \rightarrow \tau^+\tau^- \rightarrow (\ldots\ldots)$ to $\gamma\gamma \rightarrow e^+e^-(\mu^+\mu^-)$
 - This allows to significantly cancel many uncertainties
 - The experimental knowledge of a_e and a_μ is several orders of magnitude more precise than a_τ
- The limitations from present analysis seems better than those from DELPHI;
- Spin-spin correlations probably small (see appendix of our paper);
- Our studies suggest that the currently available datasets of the LHC experiments are already sufficient to improve limits on a_τ by a factor of two, hence, we consider this analysis as highly interesting and worthwhile to be done in the future;
- ATLAS & CMS combination for better precision?
- High statistics studies may discover BSM effects.