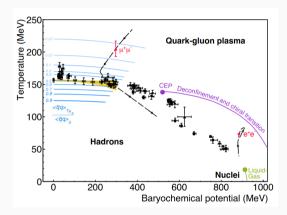


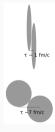
FS


Virtual Photon Measurements with the HADES at GSI

Dielectron reconstruction in Ag+Ag collisions at $\sqrt{s_{NN}} = 2.55 \, GeV$ Quark Matter, 04.04.-10.04.2022

Jan-Hendrik Otto for the HADES collaboration, JLU Gießen 07/04/2022

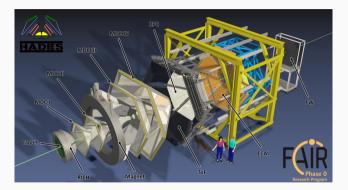
HADES Physics Program


Nature Physics volume 15, pages 1040-1045 (2019)

- Explore high- μ_B region of the QCD phase diagram
- Focus on rare and penetrating probes

 → Virtual and real photons, that probe all different stages of heavy
 ion collisions: Initial NN collisions → Fireball → Decay of hadronic
 resonances
- · Address various aspects of baryon-meson coupling

 \rightarrow Heavy ion collisions at $\sqrt{s_{NN}} = 2 - 3 \, GeV$

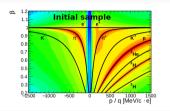

- HADES collision dynamics strongly differs from high energy collisions
- \rightarrow Pion and nucleon beams e.g. for reference

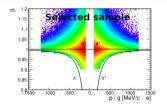
1/15

Quark Matter 2022

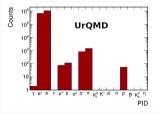
The High Acceptance DiElectron Spectrometer

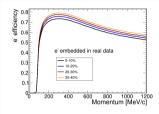
- Fixed target experiment at SIS18 (GSI, Germany)
- Magnet spectrometer
- · Low mass Mini-Drift-Chambers (MDCs)
- · Time of flight walls RPC and ToF
- Upgraded RICH detector and new ECal for electron and photon detection
- Almost full azimuth angle coverage and polar angles between $18^\circ\,-\,85^\circ$
- 15-fold (25 μ m, $\Delta z = 3.7$ mm) segmented target
- Accepted trigger rate 16 kHz for HIC, 50 kHz for elementary reactions

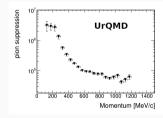



07/04/2022

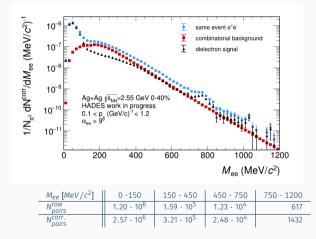
Quark Matter 2022


2/15


Detector performance - electron identification



- HADES (RICH) combines high efficient electron identification with high pion and conversion suppression
- Electron efficiency derived embedding single e^{\pm} in real data
- $\cdot \quad \rho \to \pi \pi \ (\sim 100\%) \text{ vs.} \\ \rho \to ee \ (\sim 4.72 \cdot 10^{-5})$
- Electron purity of P > 99% at low momenta; P \sim 90% at high momenta



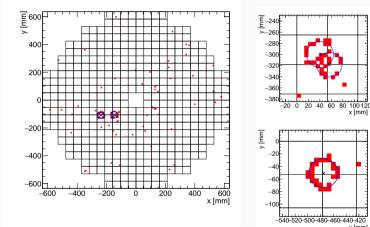
07/04/2022

Quark Matter 2022

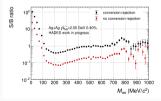
3/15

Pair invariant mass distribution

• Efficiency correction based on single electron simulation embedded into real data (in p, θ, ϕ)

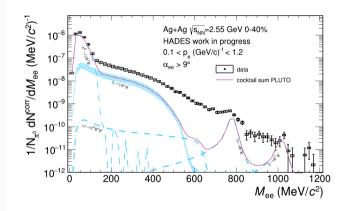

$$\cdot < BG_{+-} >= 2k\sqrt{< FG_{++} >< FG_{--} >}$$

- BG from mixed-event technique for $M_{ee} > 400 \, MeV/c^2$
- $S/B(M_{ee} = M_{\omega}) \approx 3$
- S/B > 1 for $M_{ee} > 500 MeV/c^2$



Upgrade of the HADES RICH (in cooperation with CBM)

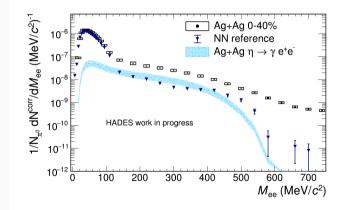
- Allows for high efficient electron identification in clean environment
- Recognition of conversion pairs even with opening angle $\alpha = 0^{\circ}$



Ouark Matter 2022

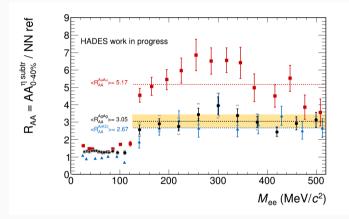
x [mm]

x [mm]



- Hadron multiplicities extracted from the same data
 - Multiplicities of pseudoscalars extracted from 4-electron analysis $(\pi^0/\eta \rightarrow \gamma \gamma^{(\star)} \rightarrow 4e)$
 - $\omega \rightarrow e^+e^-$ signal allows for multiplicity estimation
 - ϕ from K^+K^- and e^+e^-
- Clear excess above final freeze-out hadrons over the full invariant mass region (Fireball + initial NN collisions)

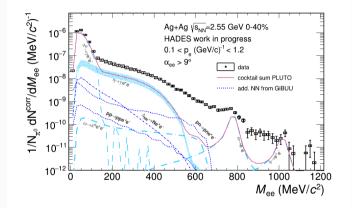
07/04/2022


Towards the dielectron excess ratio R_{AA}

- *R*_{AA}: Dielectron yield in AA collisions normalized to elementary reactions
- NN reference measured at $\sqrt{s_{NN}} = 2.42 \, GeV$ \rightarrow Subtraction of η yield in both data sets to remove energy dependence
 - → Normalization of AA spectra to N_{π^0} to remove system size dependence
- NN data at $\sqrt{s_{NN}} = 2.55 \, GeV$ taken in Feb22 - currently analyzed

AuAu, ArKCl data published in Nature Physics volume 15, pages 1040-1045 (2019)

• At small M_{ee} the π^0 Dalitz yield dominates

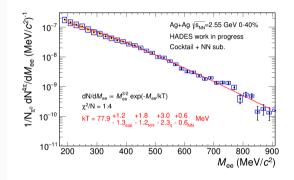

ightarrow slight excess only

- Excess of $< R_{AA}^{AgAg} >= 3.05$ observed beyond the π^0 region
- Systematic uncertainties dominated by meson multiplicities (η, yellow band)
- The excess ratio aligns in between of ArKCl and AuAu HADES data

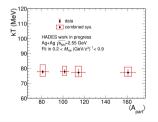
system	$< A_{part} >$
ArKCl	38.5
AgAg	102
AuAu	173

07/04/2022

Towards in-medium contribution



- Use model calculations to compensate for currently missing NN reference to reveal in-medium contribution
- pp and pn simulated using GiBUU 2021 release modeling NN = 0.54 pp + 0.46 pn (analogue to Physical Review C, 6, 102.064913)
- Usage of initial NN channels from GiBUU (bremsstrahlung, Δ-resonance)

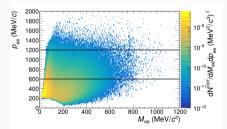


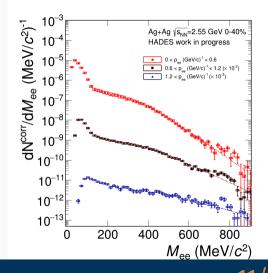
07/04/2022

Temperature of the medium

- Subtraction of hadronic cocktail and simulated initial NN contributions reveals excess radiation (Fireball radiation)
- Acceptance corrected medium radiation reveals mean temperature of the fireball; performed based on PLUTO simulation
- + Uncertainties in η multiplicity dominant
- Minor temperature dependence on centrality

10/15

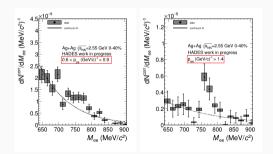

Quark Matter 2022


HADES

Momentum dependent dielectron spectra

- Perform analysis in bins of pair momentum
- Broad excess over continuum in low momentum data develops into peak structure in high momentum data at M_{ee} ~ 770 MeV/c
- · Two possible scenarios:

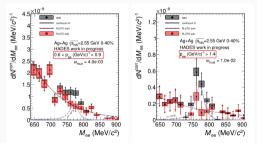
(i) ω peak is hidden under broad excess in low momentum data (ii) ω itself is broadened (calculation for ρ line-shape needed for ω line-shape analysis)

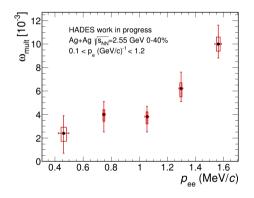

07/04/2022

Momentum dependent dielectron spectra

Assuming scenario (i)

- · Move to 5-momentum-bin analysis
- The continua of the signal spectra are fitted by a thermal function in the range 500 $MeV/c^2 < M_{ee} < 700 MeV/c^2$ to quantify the excess





Momentum dependent dielectron spectra

Assuming scenario (i)

- + A thermal momentum dependence of the $\omega \to e^+e^-$ signal is simulated using PLUTO (T_{eff} = 100 MeV/k)
- The spectrum is smoothed by tuning the ω multiplicity in each momentum bin accordingly
- Pair momentum dependence of the such extracted ω multiplicity reveals a significant increase towards high momenta

Quark Matter 2022

- The upgraded HADES spectrometer allows for high efficient electron identification paired with high pion suppression and conversion recognition
 → High quality of dielectron spectra
- Hadronic cocktail simulations reveal a clear excess of virtual photons over the full invariant mass region

 \rightarrow Quantified by the dielectron excess ratio R_{AA} aligning in between of AuAu and ArKCl data

- Thermal-like excess spectrum: $T \sim 78 \text{ MeV}/k$; comparable to HADES Au+Au data
- Pair momentum dependent differences in the line-shape in the $\rho \omega$ mass region \rightarrow calculations for ρ line-shape needed to perform ω line-shape analysis

