Hypernuclei at HADES

Recent results from the measurement of Hypernuclei in Ag+Ag collisions at $\sqrt{s_{NN}}$ = 2.55 GeV with the HADES experiment

Nuclear collisions at few GeV

Similar conditions as expected in merging neutron stars (Nature Physics 15, 1040–1045 (2019), J. Phys.: Conf. Ser. 878 012031, Phys. Rev. Lett. 122, 061101)

- Nucleons stopped in collision zone
 - ➤ Baryon dominated fireball N(B) \approx 10 N(π)
- Large proportion of baryons clustered in light nuclei (About 50% of protons)

Nuclear collisions at few GeV

Strangeness production close to free NN threshold energy:

$$N + N \rightarrow Y + K + N$$
: $\sqrt{s} = 2.55 \text{ GeV}$
 $N + N \rightarrow K + \overline{K} + N + N$: $\sqrt{s} = 2.86 \text{ GeV}$

- Steep excitation function, sensitive to medium effects
- \triangleright Strangeness exchange reactions: Y + $\pi \rightarrow$ N + \overline{K}

- Spectral functions of mesons modified by interactions with baryons and mesons
 - Decay products leptons decouple from the fireball

The HADES Experiment

- Fixed target experiment at SIS18 (GSI, Germany)
- Magnet spectrometer
- Low mass Mini-Drift-Chambers (MDCs)
- Time of flight walls
 RPC and ToF
- ➤ RICH and ECAL for e⁺e⁻ and photon identification
- Forward hodoscope for spectators detection

Almost full azimuthal angle and polar angles between 18° and 85° covered

The HADES Experiment

- PID primarily via.
 momentum and velocity
 - Separation of multiple charged particles via. specific energy loss
- Heavy-ion beamtimes:
 - > 2012: Au(1.23A GeV)+Au $\sqrt{s_{NN}}$ = 2.42 GeV 7 billion events
 - > 2019: Ag(1.58A GeV)+Ag $\sqrt{s_{NN}}$ = 2.55 GeV 14 billion events

Charged Particles

Analysis of Protons, Light Nuclei and Pions

Protons: Yield and Kinematic Distributions

Large phase space coverage with small statistical and systematic errors

- 0-10%: Nucleons almost stopped
- ➤ 10-30%: Nucleons not stopped and contaminated with spectators

Weak Decays

Reconstruction and Analysis of weakly decaying Hadrons

Weak decay reconstruction

- Combinatorial background about factor 10,000 above signals
- ➤ Long lifetimes → Off-vertex-topology
- Evaluated by an artificial neural network TMVA: arXiv:physics/0703039v5 [physics.data-an]

Toolkit for MultiVariate Data Analysis with ROOT

Weak decay reconstruction

- Combinatorial background about factor 10,000 above signals
- ➤ Long lifetimes → Off-vertex-topology
- Evaluated by an artificial neural network TMVA: arXiv:physics/0703039v5 [physics.data-an]

Reconstruction and Analysis of Λ Hyperons

- Very significant signal
- Detailed analyses of hyperon production possible

- Lifetime measurement as test-case
- Result of $(278 \pm 3 \pm 13)$ ps compatible with PDG value

Strange Yields vs. (A_{Part})

Production below (at) free NN-threshold:

$$N + N \rightarrow Y + K + N$$
: $\sqrt{s} = 2.55 \text{ GeV}$
 $N + N \rightarrow K + \overline{K} + N + N$: $\sqrt{s} = 2.86 \text{ GeV}$

- Energy provided by the system
- > Strange hadron yields scale similar with $\langle A_{Part} \rangle$: Mult $\sim \langle A_{Part} \rangle^{\alpha}$ with $\alpha_{Au+Au} = 1.45 \pm 0.06$
 - Hierarchy in production thresholds not reflected
- Scaling with absolute amount of ss

Strange Yields vs. (A_{Part})

Production below (at) free NN-threshold:

$$N + N \rightarrow Y + K + N$$
: $\sqrt{s} = 2.55 \text{ GeV}$
 $N + N \rightarrow K + \overline{K} + N + N$: $\sqrt{s} = 2.86 \text{ GeV}$

- Energy provided by the system
- > Strange hadron yields scale similar with $\langle A_{Part} \rangle$: Mult $\sim \langle A_{Part} \rangle^{\alpha}$ with $\alpha_{Au+Au} = 1.45 \pm 0.06$
 - Hierarchy in production thresholds not reflected
- \triangleright Scaling with absolute amount of $s\overline{s}$
- \triangleright Ag+Ag slope equal within errors $\alpha_{Ag+Ag} = 1.46 \pm 0.03$
- Further reduction of systematic uncertainties ongoing

Hypernuclei

Reconstruction and Analysis of Hypernuclei

Hypernuclear Properties

The Hypertriton $-\frac{3}{\Lambda}H$

- ➤ Mass of \approx 2991 MeV/c²
 - ➤ Binding energy $B(^3_{\Lambda}H) \approx 0.79 \text{ MeV/A}$
- Primarily four mesonic decay channels:

$$\rightarrow$$
 $^{3}H \rightarrow ^{3}He + \pi^{-}$ (BR $\approx 27\%$)

$$\rightarrow$$
 $^3_{\Lambda}H \rightarrow t + \pi^0$ (BR $\approx 13\%$)

$$\rightarrow$$
 $^3_{\Lambda}H \rightarrow d + p + \pi^- (BR \approx 40\%)$

- \rightarrow $^3_{\Lambda}H \rightarrow d + n + \pi^0 (BR \approx 20\%)$
- ➤ Lightest known hypernucleus
- > Current World-Average Lifetime: (211 ± 9) ps

The Hyperhydrogen $4 - {}_{\Lambda}^{4}H$

- ➤ Mass of \approx 3923 MeV/c²
 - ➤ Binding energy $B(^4_{\Lambda}H) \approx 2.63 \text{ MeV/A}$ → ≈ 3.3 $B(^3_{\Lambda}H)$
- Primarily three mesonic decay channels:

$$\rightarrow {}^{4}_{\Lambda}H \rightarrow {}^{4}He + \pi^{-}$$
 (BR $\approx 50\%$)

$$\rightarrow$$
 ⁴ _{Λ} H \rightarrow t + p + π ⁻ (BR \approx 33%)

$$\rightarrow$$
 ⁴ _{\wedge} H \rightarrow t + n + π ⁰ (BR \approx 17%)

- \triangleright Compared to the ${}_{\Lambda}^{3}H$ higher binding energy and BR of the two-body decay channel
- Current World-Average Lifetime: (218 ± 5) ps

$^3_{\Lambda}$ H Two-Body Decay: $^3_{\Lambda}$ H \rightarrow $^3_{\Lambda}$ He + π^-

- Significant signal
- Multi-differential analysis of ³H production possible

- First measurement at mid-rapidity at this energy
- Systematic studies ongoing

$^3_{\Lambda}$ H Two-Body Decay: $^3_{\Lambda}$ H \rightarrow $^3_{\Lambda}$ He + π^-

- $ightharpoonup^3 H$ Lifetime measurement to contribute to resolving the $^3 H$ lifetime puzzle
- \triangleright Lifetime of (256 ± 22 ± 36) ps compatible with free \land lifetime measured
- > Further uncertainty analyses required

$^4_{\Lambda}$ H Two-Body Decay: $^4_{\Lambda}$ H \rightarrow $^4_{He}$ + π^-

- Significant signal
- ➤ Multi-differential analysis of ⁴_^H production possible

- First measurement at mid-rapidity at this energy
- Systematic studies ongoing

$^4_{\Lambda}$ H Two-Body Decay: $^4_{\Lambda}$ H \rightarrow 4 He + π^-

- $ightharpoonup ^4$ H Lfetime measurement to contribute to world data on Hypernuclei lifetimes
- ➤ Lifetime of (222 ± 8 ± 13) ps compatible with earlier measurements measured
- > Further uncertainty analyses required

Summary

- HADES detector upgraded with FAIR technology (ECAL, RICH, STS1,2 and fRPC)
- ➤ 14 billion Ag(1.58A GeV)+Ag events collected in 2019 run
- Very detailed analyses of bulk particles (Protons, Light Nuclei and Pions)
- High quality analysis of weak decays with an artificial neural network
 - First multi-differential analysis of ³_ΛH and ⁴_ΛH production around mid-rapidity at SIS18 energies
 - ightharpoonup Contribution to ${}^3_{\Lambda}H$ and ${}^4_{\Lambda}H$ lifetime measurements

The HADES Collaboration

BACKUP

Reconstruction and Analysis of K_S Mesons

- Very significant signal
- Detailed analyses of strange meson production possible

- Lifetime measurement as test-case
- Result of (92 ± 1 ± 6) ps compatible with PDG value