Hypernuclei at HADES

Recent results from the measurement of Hypernuclei in Ag+Ag collisions at $\sqrt{s_{NN}} = 2.55$ GeV with the HADES experiment
Nuclear collisions at few GeV

- Nucleons stopped in collision zone
- Baryon dominated fireball $N(B) \approx 10 N(\pi)$
- Large proportion of baryons clustered in light nuclei (About 50% of protons)

07.04.2022
Quark Matter Conference 2022 - Simon Spies for the HADES collaboration
Nuclear collisions at few GeV

- Strangeness production close to free NN threshold energy:
 \[N + N \rightarrow Y + K + N: \quad \sqrt{s} = 2.55 \text{ GeV} \]
 \[N + N \rightarrow K + \bar{K} + N + N: \quad \sqrt{s} = 2.86 \text{ GeV} \]

- Steep excitation function, sensitive to medium effects

- Strangeness exchange reactions: \(Y + \pi \rightarrow N + \bar{K} \)

- Spectral functions of mesons modified by interactions with baryons and mesons

- Decay products – leptons – decouple from the fireball
The HADES Experiment

- Fixed target experiment at SIS18 (GSI, Germany)
- Magnet spectrometer
- Low mass Mini-Drift-Chambers (MDCs)
- Time of flight walls RPC and ToF
- RICH and ECAL for e^+e^- and photon identification
- Forward hodoscope for spectators detection
- Almost full azimuthal angle and polar angles between 18° and 85° covered
The HADES Experiment

- PID primarily via. momentum and velocity
- Separation of multiple charged particles via. specific energy loss
- Heavy-ion beamtimes:
 - 2012: Au(1.23A GeV)+Au $\sqrt{s_{NN}} = 2.42$ GeV
 - 7 billion events
 - 2019: Ag(1.58A GeV)+Ag $\sqrt{s_{NN}} = 2.55$ GeV
 - 14 billion events
Charged Particles

Analysis of Protons, Light Nuclei and Pions
Protons: Yield and Kinematic Distributions

➢ Large phase space coverage with small statistical and systematic errors

0-10%: Nucleons almost stopped
10-30%: Nucleons not stopped and contaminated with spectators
Weak Decays

Reconstruction and Analysis of weakly decaying Hadrons
Weak decay reconstruction

➢ Combinatorial background about factor 10,000 above signals
➢ Long lifetimes → Off-vertex-topology
➢ Evaluated by an artificial neural network

Weak decay reconstruction

- Combinatorial background about factor 10,000 above signals
- Long lifetimes \rightarrow Off-vertex-topology
- Evaluated by an artificial neural network
Reconstruction and Analysis of Λ Hyperons

- Very significant signal
- Detailed analyses of hyperon production possible
- Lifetime measurement as test-case
- Result of $(278 \pm 3 \pm 13)$ ps compatible with PDG value
Strange Yields vs. $\langle A_{\text{Part}} \rangle$

- Production below (at) free NN-threshold:
 \[N + N \rightarrow Y + K + N: \quad \sqrt{s} = 2.55 \text{ GeV} \]
 \[N + N \rightarrow K + \bar{K} + N + N: \quad \sqrt{s} = 2.86 \text{ GeV} \]

- Energy provided by the system

- Strange hadron yields scale similar with $\langle A_{\text{Part}} \rangle$:
 \[\text{Mult} \sim \langle A_{\text{Part}} \rangle^\alpha \text{ with } \alpha_{\text{Au+Au}} = 1.45 \pm 0.06 \]

- Hierarchy in production thresholds not reflected

- Scaling with absolute amount of $s\bar{s}$
Strange Yields vs. $\langle A_{\text{Part}} \rangle$

- Production below (at) free NN-threshold:
 \[N + N \rightarrow Y + K + N: \quad \sqrt{s} = 2.55 \text{ GeV} \]
 \[N + N \rightarrow K + \bar{K} + N + N: \quad \sqrt{s} = 2.86 \text{ GeV} \]

- Energy provided by the system

- Strange hadron yields scale similar with $\langle A_{\text{Part}} \rangle$:
 \[\text{Mult} \sim \langle A_{\text{Part}} \rangle^\alpha \text{ with } \alpha_{Au+Au} = 1.45 \pm 0.06 \]

- Hierarchy in production thresholds not reflected

- Scaling with absolute amount of $s\bar{s}$

- Ag+Ag slope equal within errors $\alpha_{Ag+Ag} = 1.46 \pm 0.03$

- Further reduction of systematic uncertainties ongoing
Hypernuclei

Reconstruction and Analysis of Hypernuclei
Hypernuclear Properties

The Hypertriton – $^{3}_{\Lambda}H$

- Mass of ≈ 2991 MeV/c²
- Binding energy $B(^{3}_{\Lambda}H) \approx 0.79$ MeV/A

- Primarily four mesonic decay channels:
 - $^{3}_{\Lambda}H \rightarrow ^{3}He + \pi^{-}$ (BR $\approx 27\%$)
 - $^{3}_{\Lambda}H \rightarrow t + \pi^{0}$ (BR $\approx 13\%$)
 - $^{3}_{\Lambda}H \rightarrow d + p + \pi^{-}$ (BR $\approx 40\%$)
 - $^{3}_{\Lambda}H \rightarrow d + n + \pi^{0}$ (BR $\approx 20\%$)

- Lightest known hypernucleus

- Current World-Average Lifetime: (211 ± 9) ps

The Hyperhydrogen $4–^{4}_{\Lambda}H$

- Mass of ≈ 3923 MeV/c²
- Binding energy $B(^{4}_{\Lambda}H) \approx 2.63$ MeV/A
 $\rightarrow \approx 3.3 \times B(^{3}_{\Lambda}H)$

- Primarily three mesonic decay channels:
 - $^{4}_{\Lambda}H \rightarrow ^{4}He + \pi^{-}$ (BR $\approx 50\%$)
 - $^{4}_{\Lambda}H \rightarrow t + p + \pi^{-}$ (BR $\approx 33\%$)
 - $^{4}_{\Lambda}H \rightarrow t + n + \pi^{0}$ (BR $\approx 17\%$)

- Compared to the $^{3}_{\Lambda}H$ higher binding energy and BR of the two-body decay channel

- Current World-Average Lifetime: (218 ± 5) ps
$^3\Lambda$H Two-Body Decay: $^3\Lambda$H \rightarrow^3He + π^-

- Significant signal
- Multi-differential analysis of $^3\Lambda$H production possible
- First measurement at mid-rapidity at this energy
- Systematic studies ongoing
3_ΛH Two-Body Decay: 3_ΛH \rightarrow 3He + π^-

- 3_ΛH lifetime measurement to contribute to resolving the 3_ΛH lifetime puzzle
- Lifetime of $(256 \pm 22 \pm 36)$ ps compatible with free $Λ$ lifetime measured
- Further uncertainty analyses required
$^4\Lambda$H Two-Body Decay: $^4\Lambda$H \rightarrow 4He + π^-

- Significant signal
- Multi-differential analysis of $^4\Lambda$H production possible
- First measurement at mid-rapidity at this energy
- Systematic studies ongoing

$^4\Lambda$H - 0 - 25% Centrality
$^4\Lambda H$ Two-Body Decay: $^4\Lambda H \rightarrow ^4\text{He} + \pi^-$

- $^4\Lambda H$ lifetime measurement to contribute to world data on Hypernuclei lifetimes
- Lifetime of $(222 \pm 8 \pm 13)$ ps compatible with earlier measurements measured
- Further uncertainty analyses required
Summary

➢ HADES detector upgraded with FAIR technology (ECAL, RICH, STS1,2 and fRPC)

➢ 14 billion Ag(1.58A GeV)+Ag events collected in 2019 run

➢ Very detailed analyses of bulk particles (Protons, Light Nuclei and Pions)

➢ High quality analysis of weak decays with an artificial neural network

➢ First multi-differential analysis of $^3\Lambda H$ and $^4\Lambda H$ production around mid-rapidity at SIS18 energies

➢ Contribution to $^3\Lambda H$ and $^4\Lambda H$ lifetime measurements
The HADES Collaboration
Thank you for your Attention!
Reconstruction and Analysis of K^0_S Mesons

- Very significant signal
- Detailed analyses of strange meson production possible
- Lifetime measurement as test-case
- Result of $(92 \pm 1 \pm 6)$ ps compatible with PDG value