Jet-medium photons as a probe of early time dynamics and parton energy loss mechanisms

Rouzbeh Modarresi-Yazdi¹ Shuzhe Shi^{1,2} Charles Gale¹ Sangyong Jeon¹

¹McGill University

²Stony Brook University

R. Modarresi-Yazdi (McGill)

Jet-Med. Photons and Jet-Energy Loss

April 7th, 2022

1/16

compute calcul canada canada

Introduction

- Jet energy loss in QGP medium
 - well-established signal of QGP existence
 - can study the properties of QGP medium
- Several approaches to jet-quenching reproducing data across many systems
- Photons: complementary probes with λ_{mfp} larger than the medium size
- In this talk
 - 1. First dynamical calculation of jet-medium photons, compared with data
 - 2. Photons as potential probes of jet-energy loss
- Specific models to consider
 - 1. MARTINI (Schenke et al. Phys. Rev. C 80 (2009))
 - 2. CUJET (Xu et al. JHEP 08 (2014) 063)

MARTINI and CUJET

MARTINI:

Solves rate equation

$$\frac{\mathrm{d}P(p)}{\mathrm{d}t} = \int_{k} \left(P(p+k) \frac{\mathrm{d}\Gamma_{\mathrm{AMY}}(p+k,k)}{\mathrm{d}k} - P(p) \frac{\mathrm{d}\Gamma_{\mathrm{AMY}}(p,k)}{\mathrm{d}k} \right)$$
(1)

► Radiative energy loss: all orders in opacity expansion CUJET:

$$\frac{\mathrm{d}P(p)}{\mathrm{d}t} = \int_{k>0} P(p) \frac{\mathrm{d}\Gamma_{\mathrm{DGLV}}(p,k)}{\mathrm{d}k}$$
(2)

► Leading order in opacity expansion, explicit formation time dependence Both:

- Collisional energy loss on the same footing as radiation
- LPM effect addressed in both

R. Modarresi-Yazdi (McGill)

Jet-Med. Photons and Jet-Energy Loss

April 7th, 2022

→ < ∃ →</p>

Framework

Event Generation

	Figure 1: Flow of Physical information	<ロ> <週> <週> < 回> < 回> < 回> < 回> < 回> =	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
R. Modarresi-Yazdi (McGill)	Jet-Med. Photons and Jet-Energy Loss	April 7th, 2022	4 / 16

Event Generation: A Modular Adventure

Figure 2	: Workflow	for	event	generation
----------	------------	-----	-------	------------

Jet-Med. Photons and Jet-Energy Loss

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 April 7th, 2022

4/16

э

Charged Hadron R_{AA}

► $\eta/s = 0.08$

 MC-Glauber initial condition

Figure 3: Charged Hadron RAA, central

Jet-Med. Photons and Jet-Energy Loss

< □ > < □ > < □ > < □ > < □ > < □ > < □ >
 April 7th, 2022

Charged Hadron R_{AA}

Good agreement for semi-central events

Figure 4: Charged Hadron RAA, semi-central

Jet-Med. Photons and Jet-Energy Loss

▲ ● ◆ ● ◆ ● ◆
 ▲ Pril 7th, 2022

Jet R_{AA}

Similarly for jets, good agreement at very central...

Figure 5: Jet RAA, central

Jet-Med. Photons and Jet-Energy Loss

April 7th, 2022

イロト イボト イヨト イヨ

Jet R_{AA}

... and semi-central events

Figure 6: Jet RAA, semi-central

Jet-Med. Photons and Jet-Energy Loss

April 7th, 2022

э

8/16

イロト 不得 トイヨト イヨト

Photons in HIC

Photons from Jet-Medium Interactions

▶ Two main photon production channels available to a jet in QGP

- 1. Jet-Bremsstrahlung: kicks from the medium impart virtuality which is radiated as a photon
- 2. Jet-Conversion: very soft exchanges with the medium "convert" a fermion jet to a photon which inherits its energy and momentum

Jet-Medium Photons

Similar to other radiative/collisional energy loss channels, jet medium photons are computed by

$$f_{\gamma}(k) = \int \mathrm{d}^4 x \, \mathrm{d}^3 p \, P_{\mathrm{j}}(\mathbf{p}, \mathbf{x}, t) \frac{\mathrm{d}\Gamma(\mathbf{p}, \mathbf{k})}{\mathrm{d}^3 p \, \mathrm{d}^3 k} \tag{3}$$

- MARTINI: Bremsstrahlung rates have been computed within AMY-McGill and tabulated (Schenke et al. Phys. Rev. C 80 (2009))
- ▶ CUJET: No bremsstrahlung photons (work in progress)

Conversion Photons

• Can convert to photons via (at LO in α_s)

- 1. QCD Compton Scattering
- 2. qq Annihilation
- Both have a t-channel, dominated by small momentum transfers
- Conversion: assume all the contribution comes from that region of phase-space

In that limit:

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}^{3}p\,\mathrm{d}^{3}k}(\mathbf{p},\mathbf{k}) = e_{f}^{2}\frac{2\pi\alpha\alpha_{\mathrm{s}}}{3}\,\frac{T}{p}\left[\frac{1}{2}\ln\frac{2pT}{m_{q}^{2}} - 0.36149\right]\delta^{(3)}(\mathbf{p}-\mathbf{k})\tag{4}$$

Conversion photon spectrum: directly proportional to parton spectrum!

Photon Yield: MARTINI

- Prompts: dominant as p_T increases
- Medium sources lose significance beyond p_T ≈ 5 GeV
- ▶ 12% (Conv.) + 18%(Brem.) = 30% of total yield for $p_T \in [5, 10]$ GeV
- (Prompt,Pre-Eq,Thermal) from
 C. Gale et al.
 (Phys.Rev.C 105 (2022) 1,
 014909)

4	Þ	< ₽	•	•	2	Þ		2	×.	- 2	うく	. C
		Apri	il 7	th,	20)22	2				13/	16

Jet-Med. Photons and Jet-Energy Loss

Jet-Medium Photons: MARTINI

- Compare total photon spectrum with & without jet-medium contribution
- Pre-Eq. Photons of dashed line from J. Churchill et al. (Phys.Rev.C 103 (2021) 2, 024904)
- ▶ Jet-Medium: nearly 30% of photon yield at intermediate p_T

April 7th, 2022

・ 何 ト ・ ヨ ト ・ ヨ

Conversion Photons: Comparison

- Spectra:
 (Pre-Eq + Thermal + Prompt + (conv. or conv.) + Brem)
- ► ≈ 5% difference at most central collision: entirely due to jet-conv.

Figure 10: Semi-total photon spectra

April 7th, 2022

(4) (3) (4) (4) (4)

Conclusion & Outlook

- Presented the first dynamical calculation of jet-medium photons with realistic jet distribution, realistic hydro background
- Jet-medium γ contribute significantly: ~ 30% of total yield for intermediate p_T
- Jet-Conversion Photons: directly proportional to underlying jet distribution, dependent on jet-energy loss mechanisms.
- Added CUJET into JETSCAPE: allowing for fair comparison between CUJET and MARTINI

Setting the stage for a multi-messenger comparison of (any) energy loss mechanisms

- Introduce bremsstrahlung photons to CUJET
- \blacksquare Extend the work to $\sqrt{s}_{\rm NN}=$ 5.02 TeV, RHIC Energies
- More observables (ex: Jet-Medium photon v₂)