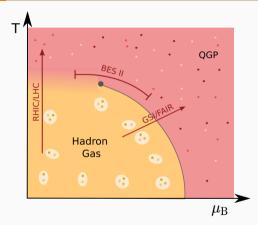
Temperature and net baryochemical potential dependence of η/s in a hybrid approach

Niklas Götz

in collaboration with Hannah Elfner

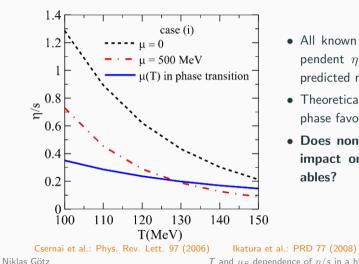


QUARK MATTER 2022

APRII 7th 2022

Exploring the QCD phase diagram

- Want to study the properties of nuclear matter at different densities and temperature
- Hybrid approaches, combining hadronic transport and hydrodynamic evolution, describe dynamics of heavy-ion collisions well
- Input: EoS and transport coefficients
- Flow measurements: almost perfect fluid, but also evidence for small but non-zero shear viscosity η/s
- Evaluation of η/s in lattice QCD is challenging due to numerical problems


 Karpenko et al.: PRC 91 (2015)
 Akamatsu et al.: PRC 98 (2018)
 Du et al.: Comp.Phys.Com. 251 (2020)

 Nandi et al.: PRC 102 (2020)
 Schäfer et al.: 2112.08724
 Shen: 2001.11858

 Everett et al.: Phys. Rev. Lett. 126
 Kovtun et al.: JHEP 0310 (2003)
 Ghiglieri et al.: JHEP 1803 (2018)

Non-constant shear viscosity

Denicol et al.: PRC 88 (2013)

- All known fluids have a temperature dependent η/s , and a minimum of η/s is predicted near transition
- Theoretical predictions for the hadron gas phase favour strong μ_B dependence
- Does non-constant η/s have a strong impact on the evolution and observables?

Gorenstein et al.: PRC 88 (2008)

- Parameterize η/s (T, μ_B) using available constraints
- Study the qualitative effect on bulk observables, especially elliptic flow, in comparison with constant η/s or η/s(T) in a hybrid approach
- Compare for low to intermediate energies, where impact of μ_{B} is significant
- Study the generation of elliptic flow in a hybrid approach

SMASH-vHLLE-hybrid

- Modular hybrid approach for the description of intermediate and high energy heavy-ion collisions
- Open-source and public
- Available on Github
- In good agreement with experimental data across a wide range of collision energies
- Conserves all charges (B, Q, S)

Schäfer et al.: 2112.08724 Weil et al.: PRC 94 (2016) DOI: 10.5281/zenodo.3484711 Cooper and Frye: PRD 10 (1974) Huovinen et al.: Eur. Phys. J A 48 (2012) Karpenko et al.: PRC 91, 064901 (2015) Karpenko et al.: Comput. Phys. Commun. 185 (2014)

SMASH

- Hadronic transport approach
- Initial conditions

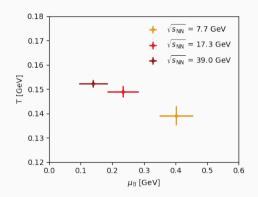
+

vHLLE

- 3+1D viscous hydrodynamics
- CORNELIUS routine to determine freezeout surface

+

smash-hadron-sampler


- Cooper-Frye sampler
- Particlization of fluid elements

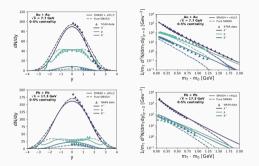
+

SMASH

- Hadronic transport approach
- Evolution of the late hadronic rescattering stage

SMASH-vHLLE-hybrid

- Initial Conditions: Particles propagate and interact until hypersurface of constant proper time (= passing time of nuclei) is crossed
- Fireball evolution: QGP phase is evolved according to chiral model EoS and given transport coefficients until hypersurface with constant energy density ϵ_c is reached
- **Particlization**: At ϵ_c according to SMASH HRG EoS
- Afterburner: Final propagation and interactions. Collisions can be turned off


Steinheimer et al.: J.Phys.G 38 (2011)

Schäfer et al.: 2112.08724

724 Karpenko et al.: PRC 91 (2015)

Results of SMASH-vHLLE-hybrid

Schäfer et al.: 2112.08724

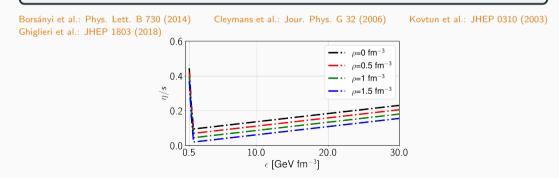
SMASH-vHLLE-hybrid reproduces rapidity and m_T spectra at different energies well

Poster presentation 3 T11-4

Exploring the high baryon-density regime of the QCD phase diagram within a novel hybrid approach - Anna Schäfer

Ansatz

- Parameterization in (ϵ, ρ) instead of (T, μ_B) , as those quantities are evolved in hydrodynamic evolution
- Linear dependence on ϵ and ρ assumed
- η/s as approximation for $\eta T/(\epsilon + p)$ at finite μ_B

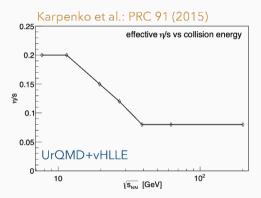

$$\eta/s = \max\left(0, (\eta/s)_{\mathsf{kink}} + egin{cases} S_{\epsilon,H}(\epsilon - \epsilon_{\mathsf{kink}}) + S_
ho
ho, & \epsilon < \epsilon_{\mathsf{kink}}
ight) \ S_{\epsilon,Q}(\epsilon - \epsilon_{\mathsf{kink}}) + S_
ho
ho & \epsilon > \epsilon_{\mathsf{kink}}
ight)$$

• Even for $S_{\rho} == 0$: implicit μ_B dependence

Parameterization of η/s

Constraints

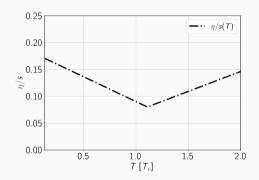
- ϵ_{kink} is set to the critical energy density of 1 GeV/fm³
- $(\eta/s)_{\mathrm{kink}}$ is set to the KSS bound
- $S_{\epsilon,Q}$ is set to match the (N)LO-pQCD limit at T = 400 MeV
- $S_{\epsilon,H}$ is set to match η/s from box calculations in SMASH at $\epsilon_{\rm c}$ and $\mu_B=0$



 ${\cal T}$ and μ_B dependence of η/s in a hybrid approach

Parameterizations for comparison

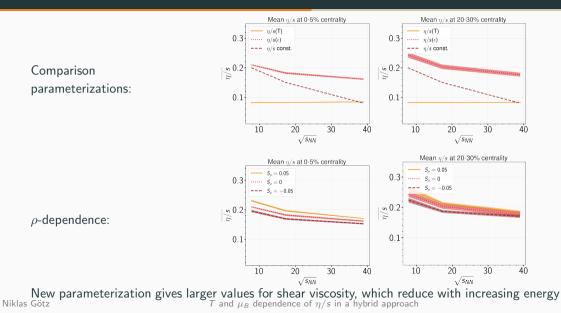
1. comparison


effective, constant η/s

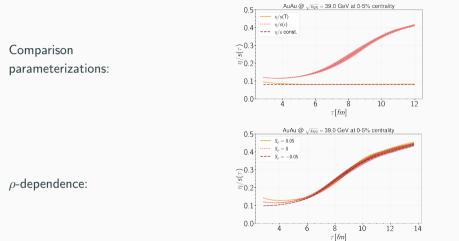
originally used in SMASH-vHLLE-hybrid

2. comparison:

 $\eta/s(T)$ from Bayesian inference

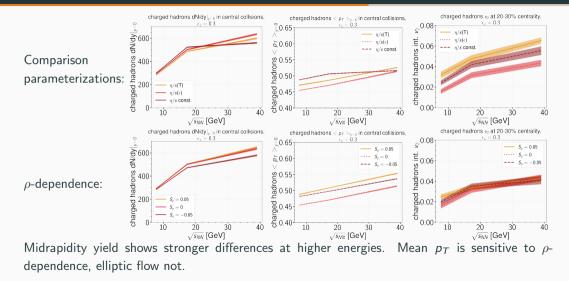


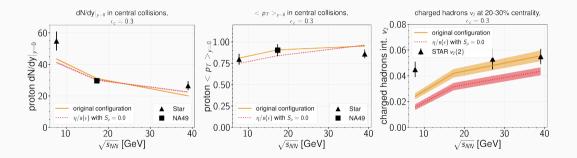
based on results of the $\mathsf{JETSCAPE}$ collaboration


JETSCAPE Phys. Rev. Lett. 126 (2021)

JETSCAPE PRC 103 (2021)

Effective shear viscosity

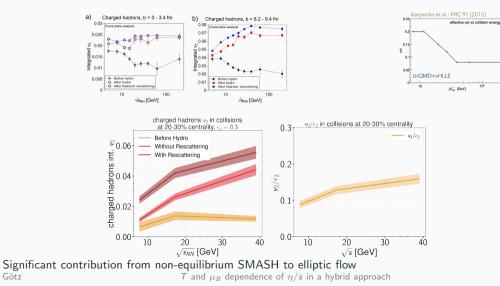

Time evolution of shear viscosity



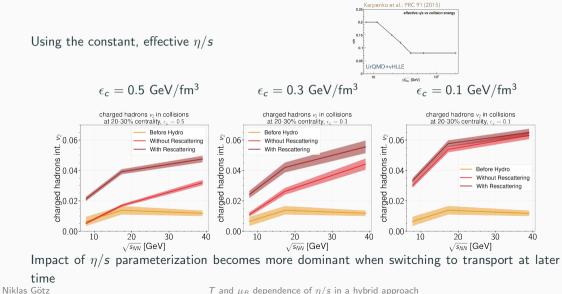
Energy density weighted mean shear viscosity changes significantly during the evolution. Differences due to ρ -dependence are most significant in the beginning of the evolution.

Niklas Götz

Impact on bulk observables

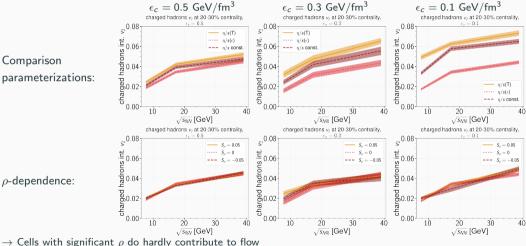


 $\begin{array}{l} \mbox{Parameterisation in ϵ reproduces experimental results up to a similar degree than tuned effective $$\eta/s$ \\ \mbox{STAR PRC 86 (2012)} & \mbox{STAR PRC 96 (2017)} & \mbox{NA49 Phys.Rev. Lett. 80 (1998)} & \mbox{NA49 Phys.Rev. Lett. 73 (1994)} \\ \end{array}$

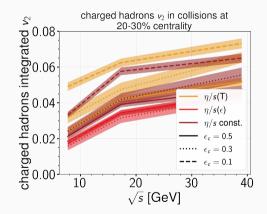

Flow contribution and response

Niklas Götz

Similar to earlier analysis in UrQMD hybrid (Auvinen et al.: PRC 88 (2013)) Using the constant, effective η/s



Flow contributions depending on ϵ_c


Impact on flow results

Elliptic Flow at the end of the hybrid evolution $r_{\rm e} = 0.5 \ {\rm CeV}/({\rm fm}^3)$

Flow for varying ϵ_c

Elliptic Flow at the end of the hybrid evolution

 v_2 for $\eta/s(\epsilon)$ does not change as function of $\epsilon_c \to \eta/s(\epsilon)$ close to shear viscosity in transport simulation

Niklas Götz

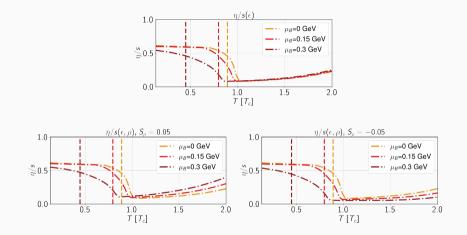
Conclusions

- In the hybrid approach SMASH-vHLLE-hybrid, a parameterization $\eta/s(\epsilon, \rho)$ based on known constraints was tested
- The dependence on ρ was shown to have no significant impact on elliptic flow, it increases however the yield.
- Based on the virtually unchanged values of v₂ when changing ε_c, the proposed parameterization could be a good proxy for η/s in the non-equilibrium hadronic transport stage

Further investigations from here on

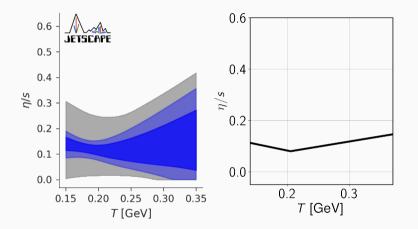
- Include a parameterization of ζ/s and study interaction of both
- Increase range of studied energies

SMASH and SMASH-vHLLE-hybrid are available at https://github.com/smash-transport. More information can be also found at https://smash-transport.github.io/. Uncoming


pcoming:		
Poster presentation 3 T11-4	Poster presentation 3 T10	Poster presentation 3 T16
Exploring the high baryon- density regime of the QCD phase diagram within a novel hybrid approach - Anna Schäfer	Collective flow at SIS energies within a hadronic transport approach: Influence of light nuclei formation and equation of state - Justin Mohs	Multi-particle collisions in the hadronic stage: Influence of annihilation and catalysis reac- tions on proton and deuteron yields - Jan Staudenmaier
Available online:		
Poster presentation 1 T02	Poster presentation 2 T13	Poster presentation 1 T07_1
Angular Momentum in Heavy- Ion Collisions via the Hadronic Transport Approach SMASH - Nils Sass	Enhancement of photon mo- mentum anisotropies during the late stages of relativistic heavy-ion collisions - Oscar Garcia-Montero	Impact of hadronic interac- tions and conservation laws on cumulants of conserved charges in a dynamical model - Jan Hammelmann
Poster presentation 1 T02	Poster presentation 2 T13	
Impact of the nuclear struc- ture on the isobar run at RHIC - Hannah Elfner	Dynamical broadening of vector-meson spectral func- tions - Renan Hirayama	

T and μ_B dependence of η/s in a hybrid approach

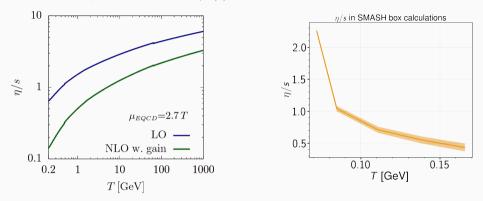
Backup


Niklas Götz

Parameterization in ϵ

The conversion $(\epsilon, \rho) \rightarrow (T, \mu_B)$ is performed using the same EoS as in the hydrodynamic evolution, a chiral hardon-quark EoS (Steinheimer et al.: J.Phys.G 38 (2011)). Niklas Götz T and μ_B dependence of η/s in a hybrid approach

Parameterization in T



Chosen $\eta/s(T)$ parameterization lies inside the 90% confidence interval of Bayesian inference. JETSCAPE Phys. Rev. Lett. 126 (2021) JETSCAPE PRC 103 (2021)

Niklas Götz

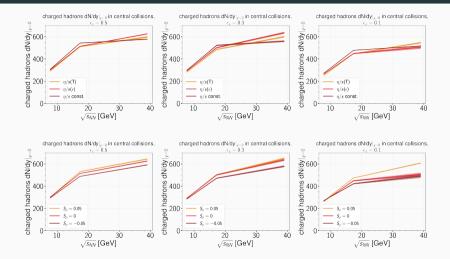
Constraints

Input used for fixing the steepness of $\eta/s(\epsilon)$

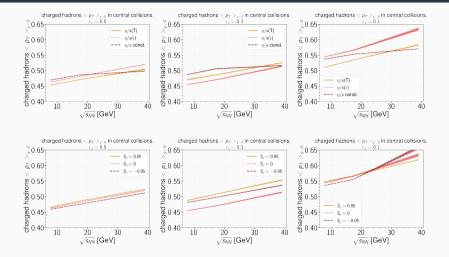
pQCD constraint from Ghiglieri et al.: JHEP 1803 (2018)

Niklas Götz

Parameters used for non-constant η/s

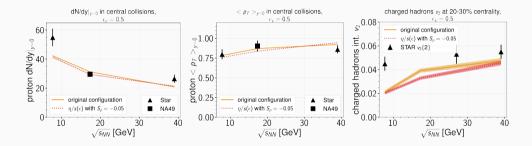

Parameterization	ϵ -dependent	ho-dependent	T-dependent	$\epsilon_{kink} \left[\frac{\text{GeV}}{\text{fm}^3} \right] / T_{kink} \text{ [GeV]}$	$(\eta/s)_{kink}/(\eta/s)_{min}$	$S_{e/T,H} \left[\frac{\text{fm}^3}{\text{GeV}}\right] / [\text{GeV}^{-1}]$	$S_{e/T,Q} \left[rac{\mathrm{fm}^3}{\mathrm{GeV}} \right] / [\mathrm{GeV}^{-1}]$	S_{ρ} [fm ³]
$\eta/s(\epsilon)$	Y	N	N	1	0.08	-0.7/-0.54/-0.53	0.0047	0
$\eta/s(\epsilon, ho)^+$	Y	Y	N	1	0.08	-0.7/-0.54/-0.53	0.0047	0.03
$\eta/s(\epsilon, \rho)^-$	Y	Y	N	1	0.08	-0.7/-0.54/-0.53	0.0047	-0.03
$\eta/s(T)$	N	N	Y	0.205	0.08	-0.05	0.4	0

Parameters used for constant η/s as well as chosen smearing parameters (both from Karpenko et al.: PRC 91 (2015))

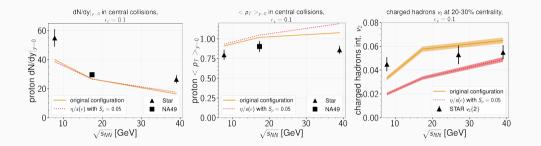

system	\sqrt{s}	η/s	R_{\perp}	R_{η}
Au + Au	7.7	0.2	1.4	1.2
Pb+Pb	17.3	0.15	1.4	0.7
Au + Au	39.0	0.08	1.0	0.3

Niklas Götz

ϵ_c : Impact on midrapidity yield



ϵ_c : Impact on mean transverse momentum


Longer hydro increases $< p_T >$. For high \sqrt{s} , this effect is increased for negative ρ -dependence

Niklas Götz

STAR PRC 86 (2012) STAR PRC 96 (2017) NA49 Phys.Rev. Lett. 80 (1998) NA49 Phys.Rev. Lett. 73 (1994)

Niklas Götz

A late transition to transport produces excess transverse momentum. STAR PRC 86 (2012) STAR PRC 96 (2017) NA49 Phys.Rev. Lett. 80 (1998) NA49 Phys.Rev. Lett. 73 (1994)

Niklas Götz