

Relativistic fluid dynamics of multiple conserved charges

Jan Fotakis

University of Frankfurt

fotakis@itp.uni-frankfurt.de

Harri Niemi, Etele Molnár, Moritz Greif, Gabriel Denicol, Dirk Rischke, Carsten Greiner

Motivation

Traditionally:

Viewed as 'blob' of <u>one type of matter</u> (single component) with <u>one velocity field</u>

usually 'blob' of energy
 with conserved particle number

https://www.quantumdiaries.org/wp-content/uploads/2011/02/FlowPr.jpg

Motivation

Traditionally:

Viewed as 'blob' of <u>one type of matter</u> (single component) with <u>one velocity field</u>

usually 'blob' of energy
 with conserved particle number

https://www.quantumdiaries.org/wp-content/uploads/2011/02/FlowPr.jpg

Consists of <u>multiple components</u> with <u>various properties</u> with <u>multiple velocity fields</u>

- with multiple conserved quantities(e.g. energy, electric charge, baryon number, strangeness, ...)
- mixed chemistry coupled charge currents!

Motivation

Increasing interest in the recent years ...

Simulation with baryon number

Denicol et al., PRC 98, 034916 (2018)

Li et al., PRC 98, 064908 (2018)

Du et al., Comp. Phys. Comm. 251 (2020) 107090

Diffusion coefficients with BQS

Greif et al., PRL 120, 242301 (2018)

Rose et al., PRD 101, 114028 (2020)

Fotakis et al., PRD 104, 034014 (2021)

Das et al., arXiv:2109.01543

Simulation with multiple charges

Fotakis et al., PRD 101, 076007 (2020)

Chen et al., arXiv:2203.04685

Theory with multiple conserved charges

Monnai et al., Nucl. Phys. A847:283-314 (2010)

Kikuchi et al., PRC 92, 064909 (2015)

Fotakis et al., arXiv:2203.11549

BQS equation of state

Noronha-Hostler et al., PRC 100, 064910 (2019)

Monnai et al., arXiv:2101.11591

On this conference ...

Plaschke et al., Poster Session 1 T02/T03

Mishra et al., Poster Session 2 T03

Almaalol et al., Poster Session 2 T14_2

Pihan et al., Poster Session 2 T07_2

Weickgenannt., Plenary Session VII

... and many more!

<u>Hydrodynamics:</u> macroscopic effective field theory of thermal matter close to local equilibrium

Here: single fluid velocity field u^{μ}

Conservation of Energy and Momentum: $\;\partial_{\mu}T^{\mu\nu}=0\;$

Conservation of charge: $\,\partial_{\mu}N_{q}^{\mu}=0\,$

<u>Hydrodynamics:</u> macroscopic effective field theory of thermal matter close to local equilibrium

Here: single fluid velocity field u^{μ}

Conservation of Energy and Momentum: $\ \partial_{\mu}T^{\mu\nu}=0$

$$T^{\mu\nu} = \sum_{i} T_{i}^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - (P_0 + \Pi) \Delta^{\mu\nu} + \pi^{\mu\nu}$$

q-th conserved charge (eg. B,Q,S)

Conservation of charge: $\partial_{\mu}N^{\mu}_{\overline{q}}=0$

$$N^{\mu}_{\overline{q}} = \sum_{i} \overline{q_i} N^{\mu}_i = \eta_{\overline{q}} u^{\mu} + V^{\mu}_{\overline{q}}$$

<u>Hydrodynamics:</u> macroscopic effective field theory of thermal matter close to local equilibrium

Here: single fluid velocity field u^{μ}

Conservation of Energy and Momentum: $\partial_{\mu}T^{\mu\nu}=0$

$$T^{\mu\nu} = \sum_{i} T_{i}^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - (P_0 + \Pi) \Delta^{\mu\nu} + \pi^{\mu\nu}$$

 $10 + 4N_{\rm ch}$ degrees of freedom, $4 + N_{\rm ch}$ equations \rightarrow

q-th conserved charge (eg. B,Q,S)

Conservation of charge: $\partial_{\mu}N^{\mu}_{\overline{q}}=0$

$$N^{\mu}_{\overline{q}} = \sum_{i} q_{i} N^{\mu}_{i} = n_{\overline{q}} u^{\mu} + V^{\mu}_{\overline{q}}$$

 $6+3N_{\rm ch}$ unknowns

Hydrodynamics: macroscopic effective field theory of thermal matter close to local equilibrium

Here: single fluid velocity field u^{μ}

Conservation of Energy and Momentum: $\partial_{\mu}T^{\mu\nu}=0$ Conservation of charge: $\partial_{\mu}N^{\mu}_{a}=0$

$$T^{\mu\nu} = \sum_{i} T_{i}^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - (P_{0} + \Pi) \Delta^{\mu\nu} + \pi^{\mu\nu} \qquad N_{q}^{\mu} = \sum_{i} q_{i} N^{\mu} = n_{q} u^{\mu} + V_{q}^{\mu}$$

 $10 + 4N_{\rm ch}$ degrees of freedom, $4 + N_{\rm ch}$ equations $\rightarrow 6 + 3N_{\rm ch}$ unknowns

q-th conserved charge (eg. B,Q,S)

$$N_q^{\mu} = \sum_{i} q_i N^{\mu} = n_q u^{\mu} + V_q^{\mu}$$

What needs to be known:

- Equation of state $P_0 = P_0(\epsilon, n_q), \quad T = T(\epsilon, n_q), \quad \alpha_q = \mu_q/T = \alpha_q(\epsilon, n_q)$
- Equations of motion for dissipative fields & <u>transport coefficients</u> $\Pi, V_a^\mu, \pi^{\mu\nu}$
- **Initial** state
- Final state: freeze-out and δf -correction

Denicol et al., PRD 85, 114047 (2012)

On basis of <u>DNMR theory</u>: derivation from the Boltzmann equation with method of moments **Fotakis et al., arXiv:2203.11549**

Also refer to: Monnai, Hirano, Nucl. Phys. A847:283-314 (2010) or Kikuchi et al., PRC 92, 064909 (2015)

Denicol et al., PRD 85, 114047 (2012)

On basis of <u>DNMR theory</u>: derivation from the Boltzmann equation with method of moments **Fotakis et al., arXiv:2203.11549**

Also refer to: Monnai, Hirano, Nucl. Phys. A847:283-314 (2010) or Kikuchi et al., PRC 92, 064909 (2015)

equilibrium off-equilibrium
$$f_{i,\mathbf{k}} = f_{i,\mathbf{k}}^{(0)} + \delta f_{i,\mathbf{k}}$$

Denicol et al., PRD 85, 114047 (2012)

On basis of DNMR theory: derivation from the Boltzmann equation with method of moments Fotakis et al., arXiv:2203.11549

Also refer to: Monnai, Hirano, Nucl. Phys. A847:283-314 (2010) or Kikuchi et al., PRC 92, 064909 (2015)

relativistic Boltzmann eq.

$$k_i^{\mu} \partial_{\mu} f_{i,\mathbf{k}} = \mathcal{C}_i[f_i]$$

2nd-order (multi-component) hydro $\dot{\Pi},~\dot{V}_a^{\langle\mu
angle},~\dot{\pi}^{\langle\mu
u
angle}$

$$\dot{\Pi},~\dot{V}_q^{\langle\mu
angle},~\dot{\pi}^{\langle\mu
u
angle}$$

Irreducible off-equilibrium moments obey Boltzmann eq.:

Problem: infinitely many coupled PDEs.

equilibrium off-equilibrium
$$f_{i,\mathbf{k}} = f_{i,\mathbf{k}}^{(0)} + \delta f_{i,\mathbf{k}}$$

$$\rho_{i,n}^{\mu\nu} = \sum_{i=1}^{N_{\text{species}}} \int \frac{\mathrm{d}^3 \mathbf{k}_i}{(2\pi)^3 E_{i,\mathbf{k}}} E_{i,\mathbf{k}}^n k_i^{\langle \mu} k_i^{\nu \rangle} \delta f_{i,\mathbf{k}}$$

Aim: Truncate in a well-defined manner ("perturbation theory")

Denicol et al., PRD 85, 114047 (2012)

On basis of <u>DNMR theory</u>: derivation from the Boltzmann equation with method of moments **Fotakis et al., arXiv:2203.11549**

Also refer to: Monnai, Hirano, Nucl. Phys. A847:283-314 (2010) or Kikuchi et al., PRC 92, 064909 (2015)

Aim: Truncate in a well-defined manner (perturbation theory)

"Order-of-magnitude approximation": relate them to the dissipative fields with constituent's transport coefficients

$$\rho_{i,n}^{\mu\nu} = \frac{\eta_{i,n}}{\eta} \pi^{\mu\nu} + \mathcal{O}(2)$$

Counting scheme:

Gradients in velocity, temperature etc. $\sigma^{\mu\nu} \sim \mathcal{O}(1), \mathcal{O}(\mathrm{Kn})$ Dissipative fields $\pi^{\mu\nu} \sim \mathcal{O}(1), \mathcal{O}(\mathrm{Rn}^{-1})$

2nd-order (multi-component) hydro
$$\dot{\Pi},~\dot{V}_a^{\langle\mu
angle},~\dot{\pi}^{\langle\mu
u
angle}$$

upcoming publication!

$$\begin{split} \tau_\Pi \dot{\Pi} + \Pi &= S_\Pi \\ \sum_{q'} \tau_{qq'} \dot{V}_{q'}^{\langle \mu \rangle} + V_q^\mu &= S_q^\mu \\ \tau_\pi \dot{\pi}^{\langle \mu \nu \rangle} + \pi^{\mu \nu} &= S_\pi^{\mu \nu} \end{split}$$

Relaxation equations (Israel-Stewart-type causal theory)

2nd-order (multi-component) hydro

$$\dot{\Pi},~\dot{V}_{q}^{\langle\mu
angle},~\dot{\pi}^{\langle\mu
u
angle}$$

upcoming publication!

$$\tau_{\Pi}\dot{\Pi} + \Pi = S_{\Pi}$$

$$\sum_{q'} \tau_{qq'} \dot{V}_{q'}^{\langle \mu \rangle} + V_{q}^{\mu} = S_{q}^{\mu}$$

$$\tau_{\pi}\dot{\pi}^{\langle \mu\nu \rangle} + \pi^{\mu\nu} = S_{\pi}^{\mu\nu}$$

Relaxation equations (Israel-Stewart-type causal theory)

$$\begin{split} S_{q}^{\mu} &= \sum_{q'} \kappa_{qq'} \, \nabla^{\mu} \alpha_{q'} - \sum_{q'} \tau_{qq'} \, V_{q',\nu} \omega^{\nu\mu} - \sum_{q'} \delta_{VV}^{(q,q')} \, V_{q'}^{\mu} \theta - \sum_{q'} \lambda_{VV}^{(q,q')} \, V_{q',\nu} \sigma^{\mu\nu} \\ &- \ell_{V\Pi}^{(q)} \, \nabla^{\mu} \Pi + \ell_{V\pi}^{(q)} \, \Delta^{\mu\nu} \nabla_{\lambda} \pi_{\nu}^{\lambda} + \tau_{V\Pi}^{(q)} \, \Pi \dot{u}^{\mu} - \tau_{V\pi}^{(q)} \, \pi^{\mu\nu} \dot{u}_{\nu} \\ &+ \sum_{q'} \lambda_{V\Pi}^{(q,q')} \, \Pi \nabla^{\mu} \alpha_{q'} - \sum_{q'} \lambda_{V\pi}^{(q,q')} \, \pi^{\mu\nu} \nabla_{\nu} \alpha_{q'} \end{split}$$

2nd-order (multi-component) hydro
$$\dot{\Pi},~\dot{V}_q^{\langle\mu
angle},~\dot{\pi}^{\langle\mu
u
angle}$$

upcoming publication!

$$\tau_{\Pi}\dot{\Pi} + \Pi = S_{\Pi}$$

$$\sum_{q'} \tau_{qq'} \dot{V}_{q'}^{\langle \mu \rangle} + V_{q}^{\mu} = S_{q}^{\mu}$$

$$\tau_{\pi} \dot{\pi}^{\langle \mu \nu \rangle} + \pi^{\mu \nu} = S_{\pi}^{\mu \nu}$$

Relaxation equations (Israel-Stewart-type causal theory)

$$\begin{split} S_{q}^{\mu} = & \sum_{q'} \kappa_{qq'} \, \nabla^{\mu} \alpha_{q'} - \sum_{q'} \tau_{qq'} \, V_{q',\nu} \omega^{\nu\mu} - \sum_{q'} \delta_{VV}^{(q,q')} \, V_{q'}^{\mu} \theta - \sum_{q'} \lambda_{VV}^{(q,q')} \, V_{q',\nu} \sigma^{\mu\nu} \\ & - \ell_{V\Pi}^{(q)} \, \nabla^{\mu} \Pi + \ell_{V\pi}^{(q)} \, \Delta^{\mu\nu} \nabla_{\lambda} \pi_{\nu}^{\lambda} + \tau_{V\Pi}^{(q)} \, \Pi \dot{u}^{\mu} - \tau_{V\pi}^{(q)} \, \pi^{\mu\nu} \dot{u}_{\nu} \\ & + \sum_{q'} \lambda_{V\Pi}^{(q,q')} \, \Pi \nabla^{\mu} \alpha_{q'} - \sum_{q'} \lambda_{V\pi}^{(q,q')} \, \pi^{\mu\nu} \nabla_{\nu} \alpha_{q'} \end{split}$$

Mixed chemistry couples diffusion currents (coupled charge-transport); already present in 1st order term 2nd order terms: couples all currents to each other; depend on all gradients! Explicit expressions for transport coefficients!

2nd-order (multi-component) hydro
$$\dot{\Pi},~\dot{V}_q^{\langle\mu
angle},~\dot{\pi}^{\langle\mu
u
angle}$$

upcoming publication!

$$\begin{split} \tau_\Pi \dot{\Pi} + \Pi &= S_\Pi \\ \sum_{q'} \tau_{qq'} \dot{V}_{q'}^{\langle \mu \rangle} + V_q^\mu &= S_q^\mu \\ \tau_\pi \dot{\pi}^{\langle \mu \nu \rangle} + \pi^{\mu \nu} &= S_\pi^{\mu \nu} \end{split}$$

Relaxation equations (Israel-Stewart-type causal theory)

$$S_q^{\mu} = \underbrace{\sum_{q'} \nabla^{\mu} \alpha_{q'}} - \sum_{q'} \tau_{qq'} V_{q',\nu} \omega^{\nu\mu} - \underbrace{\sum_{q'} \delta_{VV}^{(q,q')} V_{q'}^{\mu} \theta}_{-\sum_{q'} \lambda_{VV}^{(q,q')} V_{q',\nu} \sigma^{\mu\nu}} - \underbrace{\sum_{q'} \delta_{VV}^{(q,q')} \nabla^{\mu} \Pi + \ell_{V\pi}^{(q)} \Delta^{\mu\nu} \nabla_{\lambda} \pi_{\nu}^{\lambda} + \tau_{V\Pi}^{(q)} \Pi \dot{u}^{\mu} - \tau_{V\pi}^{(q)} \pi^{\mu\nu} \dot{u}_{\nu}}_{+\sum_{q'} \lambda_{V\Pi}^{(q,q')} \Pi \nabla^{\mu} \alpha_{q'}} - \underbrace{\sum_{q'} \lambda_{V\pi}^{(q,q')} \pi^{\mu\nu} \nabla_{\nu} \alpha_{q'}}_{-\sum_{q'} \lambda_{V\pi}^{(q,q')} \pi^{\mu\nu} \nabla_{\nu} \alpha_{q'}}_{+\sum_{q'} \lambda_{V\Pi}^{(q,q')} \Pi \nabla^{\mu} \alpha_{q'}} - \underbrace{\sum_{q'} \lambda_{V\pi}^{(q,q')} \pi^{\mu\nu} \nabla_{\nu} \alpha_{q'}}_{-\sum_{q'} \lambda_{V\pi}^{(q,q')} \pi^{\mu\nu} \nabla_{\nu} \alpha_{q'}}_{+\sum_{q'} \lambda_{V\Pi}^{(q,q')} \Pi \nabla^{\mu} \alpha_{q'}} - \underbrace{\sum_{q'} \lambda_{V\pi}^{(q,q')} \pi^{\mu\nu} \nabla_{\nu} \alpha_{q'}}_{-\sum_{q'} \lambda_{V\pi}^{(q,q')} \pi^{\mu\nu} \nabla_{\nu} \alpha_{q'}}_{+\sum_{q'} \lambda_{V\Pi}^{(q,q')} \Pi \nabla^{\mu} \alpha_{q'}} - \underbrace{\sum_{q'} \lambda_{V\pi}^{(q,q')} \pi^{\mu\nu} \nabla_{\nu} \alpha_{q'}}_{+\sum_{q'} \lambda_{V\Pi}^{(q,q')} \Pi \nabla^{\mu} \alpha_{q'}}_{+\sum_{q'} \lambda_{V\pi}^{(q,q')} \pi^{\mu\nu} \nabla_{\nu} \alpha_{q'}}_{+\sum_{q'} \lambda_{V\Pi}^{(q,q')} \Pi \nabla^{\mu} \alpha_{q'}}_{+\sum_{q'} \lambda_{V\Pi}^{(q,q')} \Pi \nabla^{\mu} \alpha_{q'}}_{+\sum_{q'} \lambda_{V\pi}^{(q,q')} \pi^{\mu\nu} \nabla_{\nu} \alpha_{q'}}_{+\sum_{q'} \lambda_{V\pi}^{(q,q')} \Pi \nabla^{\mu} \alpha_{q'}}_{+\sum_{q'} \lambda_{V\pi}^{(q,q')} \pi^{\mu\nu}}_{+\sum_{q'} \lambda_{V\pi}^{(q,q')} \Pi \nabla^{\mu} \alpha_{q'}}_{+\sum_{q'} \lambda_{V\pi}^{(q,q')} \Pi^{\mu}}_{+\sum_{q'} \lambda_{V\pi}^{(q,$$

Greif, Fotakis et al., PRL 120, 242301 (2018) Fotakis, Greif et al., PRD 101, 076007 (2020) Fotakis, Soloveva et al, PRD 104, 034014 (2021)

Mixed chemistry couples diffusion currents (coupled charge-transport); already present in 1st order term 2nd order terms: couples all currents to each other; depend on all gradients! Explicit expressions for transport coefficients!

Greif, Fotakis et al., PRL 120, 242301 (2018) Fotakis, Greif et al., PRD 101, 076007 (2020)

Simplistic case study: no viscosity, diffusion only, no 2nd-order terms, conserved B and S charge, classical, hadronic system (19 species), realistic binary elastic cross sections

Hydrodynamic (1+1)D-simulation with SHASTA

$$\Pi \equiv 0, \quad \pi^{\mu\nu} \equiv 0, \quad \tau_q \dot{V}_q^{\langle \mu \rangle} + V_q^{\mu} = \sum_{q'} \kappa_{qq'} \nabla^{\mu} \left(\frac{\mu_{q'}}{T} \right)$$

Greif, Fotakis et al., PRL 120, 242301 (2018) Fotakis, Greif et al., PRD 101, 076007 (2020)

Simplistic case study: no viscosity, diffusion only, no 2nd-order terms, conserved B and S charge, classical, hadronic system (19 species), realistic binary elastic cross sections

Hydrodynamic (1+1)D-simulation with SHASTA

$$\Pi \equiv 0, \quad \pi^{\mu\nu} \equiv 0, \quad \tau_q \dot{V}_q^{\langle \mu \rangle} + V_q^{\mu} = \sum_{q'} \kappa_{qq'} \nabla^{\mu} \left(\frac{\mu_{q'}}{T} \right)$$

Greif, Fotakis et al., PRL 120, 242301 (2018) Fotakis, Greif et al., PRD 101, 076007 (2020)

<u>Simplistic case study:</u> no viscosity, diffusion only, no 2nd-order terms, conserved B and S charge, classical, hadronic system (19 species), realistic binary elastic cross sections

Hydrodynamic (1+1)D-simulation with SHASTA

$$\Pi \equiv 0, \quad \pi^{\mu\nu} \equiv 0, \quad \tau_q \dot{V}_q^{\langle \mu \rangle} + V_q^{\mu} = \sum_{q'} \kappa_{qq'} \nabla^{\mu} \left(\frac{\mu_{q'}}{T} \right)$$

Greif, Fotakis et al., PRL 120, 242301 (2018) Fotakis, Greif et al., PRD 101, 076007 (2020)

Mixed chemistry couples diffusion currents and introduces chargecorrelation through EoS

e.g.:
$$\mu_S \equiv \mu_S(\epsilon, n_B, n_S) \
abla^\mu \alpha_S \sim {
abla}^\mu n_B$$

Generation of domains of non-vanishing local net charge (here net strangeness)!

A potentially problematic term in single-component systems

$$S_q^{\mu} = (...) + \ell_{V\pi}^{(q)} \Delta^{\mu\nu} \nabla_{\lambda} \pi_{\nu}^{\lambda} + (...)$$

Ultrarelativistic, classical system with hard-sphere interactions:

Denicol et al., PRD 85, 114047 (2012)

Used in simulations of heavy-ion collisions!

TABLE I. The coefficients for the particle diffusion for a classical gas with constant cross section in the ultrarelativistic limit, in the 14-moment approximation. The transport coefficient $\tau_{n\pi}$ was incorrectly listed as being zero in Ref. [1]

κ	$ au_n[\lambda_{ ext{mfp}}]$	$\delta_{nn}[au_n]$	$\lambda_{nn}[au_n]$	$\lambda_{n\pi}[au_n]$	$\mathscr{C}_{n\pi}[au_n]$	$\tau_{n\pi}[\tau_n]$
$3/(16\sigma)$	9/4	1	3/5	$\beta_0/20$	$\beta_0/20$	$\beta_0 / 80$

A potentially problematic term in single-component systems

$$S_q^{\mu} = (...) + \ell_{V\pi}^{(q)} \Delta^{\mu\nu} \nabla_{\lambda} \pi_{\nu}^{\lambda} + (...)$$

Ultrarelativistic, classical system with hard-sphere interactions:

Denicol et al., PRD 85, 114047 (2012)

Used in simulations of heavy-ion collisions!

TABLE I. The coefficients for the particle diffusion for a classical gas with constant cross section in the ultrarelativistic limit, in the 14-moment approximation. The transport coefficient $\tau_{n\pi}$ was incorrectly listed as being zero in Ref. [1]

К	$ au_n[\lambda_{ ext{mfp}}]$	$\delta_{nn}[au_n]$	$\lambda_{nn}[au_n]$	$\lambda_{n\pi}[au_n]$	$\mathscr{C}_{n\pi}[au_n]$	$ au_{n\pi}[au_n]$
$3/(16\sigma)$	9/4	1	3/5	$\beta_0/20$	$\beta_0/20$	$\beta_0 / 80$

$$\tau_n \dot{V}_q^{\langle \mu \rangle} + V_q^{\mu} = \sum_{q'} \kappa_{qq'} \nabla^{\mu} \alpha_{q'} - V_{q,\nu} \omega^{\nu\mu} - \tau_n V_{q'}^{\mu} \theta - \frac{3\tau_n}{5} V_{q,\nu} \sigma^{\mu\nu} + \frac{\tau_n}{20T} \Delta^{\mu\nu} \nabla_{\lambda} \pi_{\nu}^{\lambda} - \frac{\tau_n}{20T} \pi^{\mu\nu} \dot{u}_{\nu} - \frac{\tau_n}{20T} \pi^{\mu\nu} \nabla_{\nu} \alpha_q$$

A potentially problematic term in single-component systems

$$S_q^{\mu} = (...) + \ell_{V\pi}^{(q)} \Delta^{\mu\nu} \nabla_{\lambda} \pi_{\nu}^{\lambda} + (...)$$

Ultrarelativistic, classical system with hard-sphere interactions:

Denicol et al., PRD 85, 114047 (2012)

Used in simulations of heavy-ion collisions!

TABLE I. The coefficients for the particle diffusion for a classical gas with constant cross section in the ultrarelativistic limit, in the 14-moment approximation. The transport coefficient $\tau_{n\pi}$ was incorrectly listed as being zero in Ref. [1]

К	$ au_n[\lambda_{ ext{mfp}}]$	$\delta_{nn}[au_n]$	$\lambda_{nn}[au_n]$	$\lambda_{n\pi}[au_n]$	$\mathscr{C}_{n\pi}[au_n]$	$ au_{n\pi}[au_n]$
$3/(16\sigma)$	9/4	1	3/5	$\beta_0/20$	$\beta_0/20$	$\beta_0 / 80$

$$\tau_n \dot{V}_q^{\langle \mu \rangle} + V_q^{\mu} = \sum_{q'} \kappa_{qq'} \nabla^{\mu} \alpha_{q'} - V_{q,\nu} \omega^{\nu\mu} - \tau_n V_{q'}^{\mu} \theta - \frac{3\tau_n}{5} V_{q,\nu} \sigma^{\mu\nu} + \frac{\tau_n}{20T} \Delta^{\mu\nu} \nabla_{\lambda} \pi_{\nu}^{\lambda} - \frac{\tau_n}{20T} \pi^{\mu\nu} \dot{u}_{\nu} - \frac{\tau_n}{20T} \pi^{\mu\nu} \nabla_{\nu} \alpha_{q'} + \frac{\tau_n}{20T} \pi^{\mu\nu} \dot{u}_{\nu} - \frac{\tau_n}{20T} \pi^{\mu\nu} \dot{u}_{\nu} + \frac{\tau_n}{20T} \pi^{\mu\nu}$$

Second-order transport coefficients not consistent with assumed system

→ generation of unphysical charge currents

Consistency is important in charge transport! Use multi-component expressions.

Conclusion

- Derived 2nd-order relativistic fluid dynamic theory for multicomponent systems from the Boltzmann equation
- Transport coefficients given explicitly containing all information about particle interactions
- Mixed chemistry couples diffusion currents to each other → coupled charge-transport
- Consistency of EoS, 1st and 2nd transport coefficients is important!
- Thermal features from LQCD can be adapted in transport coefficients with quasi-particle models
- Implemented derived fluid dynamic theory in (3+1)D-hydro code

Outlook

- Evaluate 2nd order transport coefficients for more realistic systems
- Use more realistic initial state and equation of state
- Apply freeze-out routines, take δf -correction
- Find observables sensitive to charge-coupling → investigate impact

Backup

Equation of state with multiple conserved charges

$$P_0(T) \rightarrow P_0(T, \mu_{\rm B}, \mu_{\rm Q}, \mu_{\rm S})$$

Monnai et al., PRC 100, 024907 (2019)

Initial state with multiple conserved charges

Computation of transport coefficients (Example: diffusion coefficients)

On basis of DNMR theory: derivation from the Boltzmann equation with method of moments Fotakis et al., arXiv:2203.11549

relativistic Boltzmann eq. $k_i^{\mu} \partial_{\mu} f_{i,\mathbf{k}} = \mathcal{C}_i[f_i]$

2nd-order (multi-component) hydro

$$\dot{\Pi},~\dot{V}_q^{\langle\mu
angle},~\dot{\pi}^{\langle\mu
u
angle}$$

$$C_{i,n-1}^{\langle \mu \rangle} \equiv \int \frac{\mathrm{d}^{3} \mathbf{k}_{i}}{(2\pi)^{3} E_{i,\mathbf{k}}} E_{i,\mathbf{k}}^{n-1} k_{i}^{\langle \mu \rangle} C_{i}[f_{i}]$$

$$= -\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} C_{ij,nm}^{(1)} \rho_{j,m}^{\mu} + \text{non-linear terms}$$

Entries of "collision matrix" (for diffusive moments)

Computation of transport coefficients (Example: diffusion coefficients)

On basis of DNMR theory: derivation from the Boltzmann equation with method of moments Fotakis et al., arXiv:2203.11549

relativistic Boltzmann eg.

$$k_i^{\mu} \partial_{\mu} f_{i,\mathbf{k}} = \mathcal{C}_i[f_i]$$

2nd-order (multi-component) hydro $\dot{\Pi},~\dot{V}_a^{\langle\mu
angle},~\dot{\pi}^{\langle\mu
u
angle}$

$$\dot{\Pi},~\dot{V}_q^{\langle\mu\rangle},~\dot{\pi}^{\langle\mu\nu}$$

$$C_{i,n-1}^{\langle \mu \rangle} \equiv \int \frac{\mathrm{d}^3 \mathbf{k}_i}{(2\pi)^3 E_{i,\mathbf{k}}} E_{i,\mathbf{k}}^{n-1} k_i^{\langle \mu \rangle} C_i[f_i]$$

$$= -\sum_{m=0}^{\infty} \sum_{i} C_{ij,nm}^{(1)} \rho_{j,m}^{\mu} + \text{non-linear terms}$$

Entries of "collision matrix" (for diffusive moments)

$$\kappa_{qq'} = \sum_{n=0}^{\infty} \sum_{i,j=1}^{N_{\text{species}}} \left(\mathcal{C}^{(1)} \right)_{ij,0n}^{-1} q_i \left(q'_j J_{j,n+1,1} - \frac{n_{q'}}{\epsilon + P_0} J_{j,n+2,1} \right)$$

Diffusion coefficient matrix! (equivalent to our PRL and PRD expression)

Greif. Fotakis et al., PRL 120, 242301 (2018) Fotakis, Greif et al., PRD 101, 076007 (2020) Fotakis, Soloveva et al, PRD 104, 034014 (2021)

$$\kappa_{qq'} = \sum_{n=0}^{\infty} \sum_{i,j=1}^{N_{\text{species}}} \tau_{ij,0n}^{(1)} q_i \left(q'_j J_{j,n+1,1} - \frac{n_{q'}}{\epsilon + P_0} J_{j,n+2,1} \right)$$

Greif, Fotakis et al., PRL 120, 242301 (2018) Fotakis, Greif et al., PRD 101, 076007 (2020) Fotakis, Soloveva et al, PRD 104, 034014 (2021)

Example: introduction of features from LQCD via the usage of DQPM

Equation of State - details

Hadronic system including lightest 19 species

$$\pi^{\pm}, \pi^{0}, K^{\pm}, K^{0}, \bar{K}^{0}, p, \bar{p}, n, \bar{n}, \Lambda^{0}, \bar{\Lambda}^{0}, \Sigma^{0}, \bar{\Sigma}^{0}, \Sigma^{\pm}, \bar{\Sigma}^{\pm}$$

Assume classical statistics and non-interacting limit

$$P_0(T, \{\mu_q\}) \equiv \frac{1}{3} \sum_{i=1}^{N_{\text{species}}} \int \frac{\mathrm{d}p^3}{(2\pi)^3 E_{i,p}} \left(E_{i,p}^2 - m_i^2 \right) g_i \exp(-E_{i,p}/T + \sum_q q_i \alpha_q)$$

- Only assume baryon number and strangeness, neglect electric charge
- Tabulate state variables over energy density and net charge densities

$$T \equiv T(\epsilon, \{n_q\}), \quad \mu_q \equiv \mu_q(\epsilon, \{n_q\}), \quad P_0 \equiv P_0(\epsilon, \{n_q\})$$

Diffusion coefficient matrix - details

$$\begin{pmatrix} V_B^{\mu} \\ V_S^{\mu} \end{pmatrix} \sim \begin{pmatrix} \kappa_{BB} & \kappa_{BS} \\ \kappa_{SB} & \kappa_{SS} \end{pmatrix} \begin{pmatrix} \nabla^{\mu} \alpha_B \\ \nabla^{\mu} \alpha_S \end{pmatrix}$$

Matrix is symmetric

L. Onsager, Phys. Rev. 37, 405 (1931) & Phys. Rev. 38, 2265 (1021)

Initial conditions - details

- $\tau_0 = 2 \text{ fm/c}$
- Initially: no dissipation and only Bjorken scaling flow
- Temperature = 160 MeV
- Double-gaussian profile in net baryon number
- From EoS: get energy density

A potentially problematic term in single-component systems

$$S_q^{\mu} = (...) + \ell_{V\pi}^{(q)} \Delta^{\mu\nu} \nabla_{\lambda} \pi_{\nu}^{\lambda} + (...)$$

Ultrarelativistic, classical system with hard-sphere interactions:

Denicol et al., PRD 85, 114047 (2012)

Used in simulations of heavy-ion collisions!

TABLE I. The coefficients for the particle diffusion for a classical gas with constant cross section in the ultrarelativistic limit, in the 14-moment approximation. The transport coefficient $\tau_{n\pi}$ was incorrectly listed as being zero in Ref. [1]

κ	$ au_n[\lambda_{ ext{mfp}}]$	$\delta_{nn}[au_n]$	$\lambda_{nn}[au_n]$	$\lambda_{n\pi}[au_n]$	$\mathscr{C}_{n\pi}[au_n]$	$\tau_{n\pi}[\tau_n]$
$3/(16\sigma)$	9/4	1	3/5	$\beta_0/20$	$\beta_0/20$	$\beta_0 / 80$

Multi-component system:

$$\ell_{V\pi}^{(q)} = \frac{9}{80\sigma P} \sum_{i=1}^{N_{\text{spec}}} q_i \frac{P_i}{P} \stackrel{\text{single}}{\to} \ell_{n\pi} = \frac{\tau_n}{20T}$$

Fotakis et al., arXiv:2203.11549

The problem: system with conserved net-charge and if **each** constituent has anti-particle partner then at **vanishing** chemical potential it is:

$$\ell_{V\pi}^{(q)} = 0 \neq \ell_{n\pi} = \frac{\tau_n}{20T}$$

Run simulation of system with conserved baryon number and strangeness with shear viscosity and diffusion; account for second-order terms

$$\frac{\eta}{s} = \frac{1}{4\pi}$$

Second-order coefficients in ultrarelativistic, single-component limit from Denicol (2012)

$$\tau_n \dot{V}_q^{\langle \mu \rangle} + V_q^{\mu} = \sum_{q'} \kappa_{qq'} \nabla^{\mu} \alpha_{q'} - V_{q,\nu} \omega^{\nu\mu} - \tau_n V_{q'}^{\mu} \theta - \frac{3\tau_n}{5} V_{q,\nu} \sigma^{\mu\nu} + \boxed{\frac{\tau_n}{20T} \Delta^{\mu\nu} \nabla_{\lambda} \pi_{\nu}^{\lambda} - \frac{\tau_n}{20T} \pi^{\mu\nu} \dot{u}_{\nu}} - \frac{\tau_n}{20T} \pi^{\mu\nu} \nabla_{\nu} \alpha_q$$

Here (plot): baryon diffusion only: $\kappa_{\rm BB} \neq 0$,

Second-order transport coefficients not consistent with assumed system

→ generation of unphysical charge currents

Consistency is important in charge transport!