Jet and hadron spectra modifications in oxygen-oxygen collisions at the LHC

Aleksas Mazeliauskas

CERN Theoretical Physics Department

April 6, 2022

A. Huss, A. Kurkela, AM, R. Paatelainen, W. van der Schee, U. Wiedemann Phys.Rev.Lett. 126 (2021), Phys.Rev.C 103 (2021) [2007.13754, 2007.13758]

J. Brewer, A. Huss, AM, W. van der Schee, Phys.Rev.D (2022) [2108.13434]

theory.cern/ukraine
home.cern/solidarity-ukraine

High-energy (HEP) and heavy-ion (HIP) physics paradigms of hadron collisions

Many medium signals have been observed in small systems, but not energy loss. Aleksas Mazeliauskas

System size scan with light ions at the LHC

Measurements with peripheral PbPb and pPb collisions are inconclusive.

Minimum bias oxygen-oxygen collisions probe the relevant size regime!

Aleksas Mazeliauskas

Hadron (jet) nuclear modification factor R_{AA}

Ratio of spectrum in AA to an *equivalent number* N_{coll} of pp collisions.

$$R_{\mathsf{A}\mathsf{A}}(p_T) = \underbrace{\frac{1}{\langle N_{\mathrm{coll}} \rangle / \sigma_{nn}^{\mathrm{inel}}}}_{\langle T_{\mathsf{A}\mathsf{A}} \rangle} \frac{1/N_{\mathrm{ev}}^{AA} dN_{AA} / dp_T}{d\sigma_{pp} / dp_T}$$

 R_{AA} can deviate from unity because:

- nPDF effects (different quark/gluon abundances).
- Parton rescattering (medium-induced energy loss).
- Geometry and event selection bias. Loizides, Morsch (2017) [4]
- Extrapolation of *pp* reference spectrum. ATLAS (2016) [5]
- $\langle T_{\rm AA}\rangle$ model dependent quantity.

Nominally high- p_T observable R_{AA} depends on soft physics assumptions.

Inclusive hadron (jet) nuclear modification factor R_{AA}

 $\langle T_{AA} \rangle$ can be replaced with *experimentally measurable* beam luminosity.

$$R^{h,j}_{\rm AA,\ min\ bias}(p_T) = \frac{1}{A^2} \frac{d\sigma^{h,j}_{\rm AA}/dp_T}{d\sigma^{h,j}_{pp}/dp_T}, \quad A - {\rm the\ nucleon\ number}$$

- Only applicable to minimum bias AA measurements¹.
- Requires van der Meer scan to determine absolute AA luminosity.
- System size (multiplicity) controlled by nuclei species and collision energy.
- Light nuclei collisions ⇒ precision studies of system size dependence.

Unique opportunity of complementary measurements of ${}^{16}_{8}$ O at the LHC and RHIC.

Aleksas Mazeliauskas

¹Theoretically can do pA, but worse cancellation of experimental uncertainties due to shifted rapidities in pp and pA.

The null hypothesis—no medium-induced energy loss

The null baseline of R_{AA} can be computed with HEP precision techniques

Factorization of jet cross-section in perturbative QCD:

$$\sigma({}^{16}_{8}\mathsf{O} + {}^{16}_{8}\mathsf{O} \to j + X) = \underbrace{\mathsf{nPDF}({}^{16}_{8}\mathsf{O})}_{\text{parton distribution functions}} \otimes \underbrace{\hat{\sigma}^{j}_{ab}}_{\text{hard partonic cross section}}$$

■ (n)PDF – process-independent, non-perturbative, fixed by data.

• $\hat{\sigma}_{ab}$ – universal, perturbative and systematically improvable (LO, NLO, ...). We will calculate jet and hadron no-energy-loss baseline at next-to-leading order

$$R_{\mathsf{AA, \min bias}}^{h,j}(p_T) = \frac{1}{A^2} \frac{d\sigma_{\mathsf{AA}}^{h,j}/dp_T}{d\sigma_{pp}^{h,j}/dp_T} = \frac{\textcircled{R}}{16^2 \times \textcircled{R}}$$

Deviation from the baseline \implies medium induced energy loss.

Minimum-bias jet R_{AA}^{j} (no energy loss) in OO at $\sqrt{s_{NN}} = 7 \text{ TeV}$

We calculated partonic jet cross-sections with NNLOJET code. HKMPSW (2020) [1, 2] $\mathcal{O}(5\%)$ baseline deviation from unity.

- Cancelation of scale, hadronization and proton PDF uncertainties.
- $\mathcal{O}(2-7\%)$ oxygen nPDF uncertainties
- Additional pPb di-jet data reduces nPDF uncertainties Eskola et al. (2019) [6].

We achieved $\mathcal{O}(1-4\%)$ accuracy in the no-energy-loss jet baseline.

We also performed NLO calculations of inclusive hadron R_{AA} with INCNLO code.

Aleksas Mazeliauskas

Minimum-bias hadron R_{AA}^h in OO at $\sqrt{s_{NN}} = 7 \text{ TeV}$ and $\sqrt{s_{NN}} = 200 \text{ GeV}$

We constructed plausible energy loss signal from 12 models fitted to AA data.

Measurable energy loss signal in $10 \text{ GeV} < p_T < 50 \text{ GeV}$ region at the LHC.

Aleksas Mazeliauskas

Measuring high- p_T suppression without a pp reference

J. Brewer, A. Huss, AM, W. van der Schee, Phys.Rev.D (2022) [2108.13434]

Strategies for constructing reference jet and hadron spectra

The ratio of spectra cancels large theoretical and experimental uncertainties.

$$R_{\text{AA, min bias}}^{h,j}(p_T) = \frac{1}{A^2} \underbrace{\frac{d\sigma_{\text{AA}}^{h,j}/dp_T(6.37 \text{ TeV})}{\underbrace{d\sigma_{pp}^{h,j}/dp_T(5.02 \text{ TeV})}_{\text{measured}} \times \underbrace{\frac{d\sigma_{pp}^{h,j}/dp_T(6.37 \text{ TeV})}{\underbrace{d\sigma_{pp}^{h,j}/dp_T(5.02 \text{ TeV})}_{\text{scaling factor}}}$$

How to calculate the *scaling factor*?

Brewer, Huss, AM, van der Schee [2108.13434]

- Use perturbative QCD to calculate scaling factor theoretically. We calculated NNLO jet and NLO hadron spectra.
- Interpolate measured *pp* spectra at nearby energies.
 We performed 3-energy interpolation with uncertainty propagation.
- **3** Consider hadron and jet spectra ratios at different collision energies. We calculated NLO baseline of jet and hadron R_{AA} at mixed energies.

Perturbative QCD baseline for jet and hadron spectra

We calculated NNLO jet and NLO hadron spectra ratios in pp collisions.

Good cancellation of scale and PDF uncertainties

• $\mathcal{O}(1-4\%)$ accuracy achieved in the considered momentum range.

Aleksas Mazeliauskas

Interpolating using global fits of pp spectra

As a proof of principle we used existing jet and hadron data for interpolation:

Aleksas Mazeliauskas

11 / 15

Sensitivity to interpolation forms and assumptions

We used 9 fitting forms and varied the p_T^{\min} cut off.

Up to $\mathcal{O}(4\%)$ uncertainty from functional form, but larger sensitivity to p_T^{\min}

Propagation of experimental uncertainties

We used Markov Chain Monte Carlo to propagate uncertainties in the data

Fit to three energies is needed for smaller 68% confidence bands.

Ratios of jet and hadron spectra at different LHC energies

We calculated the mixed-energy ratio of OO and pp spectra

Uncertainty in oxygen nPDF is the limiting factor \Rightarrow motivation for pO.

See also Paakkinen, 2111.05368 [7]

Conclusions

Motivation:

- Suppression of high momentum particles is one of key signals of QGP.
- Jet quenching has so far escaped experimental detection in small systems.
- Upcoming oxygen collisions at LHC provide unique discovery opportunities.

Our conclusions:

- State-of-the-art HEP techniques \Rightarrow precise null-hypothesis baseline for R_{AA}
- Significant medium-induced signal extrapoled from existing data.
- Feasible to do accurate R_{AA} measurements even without without pp reference.

If observed in OO, jet quenching will be clear signal of high- p_T partonic rescattering affecting high momentum observables in a system just a few times larger than pp.

We need a unified picture of hadron collisions of all sizes.

Bibliography I

- Alexander Huss, Aleksi Kurkela, Aleksas Mazeliauskas, Risto Paatelainen, Wilke van der Schee, and Urs Achim Wiedemann. Discovering Partonic Rescattering in Light Nucleus Collisions. *Phys. Rev. Lett.*, 126(19):192301, 2021, 2007.13754.
- [2] Alexander Huss, Aleksi Kurkela, Aleksas Mazeliauskas, Risto Paatelainen, Wilke van der Schee, and Urs Achim Wiedemann. Predicting parton energy loss in small collision systems. *Phys. Rev. C*, 103(5):054903, 2021, 2007.13758.
- [3] Jasmine Brewer, Aleksas Mazeliauskas, and Wilke van der Schee. Opportunities of OO and pO collisions at the LHC. In *Opportunities of OO and pO collisions at the LHC*, 3 2021, 2103.01939.
- [4] Constantin Loizides and Andreas Morsch. Absence of jet quenching in peripheral nucleus–nucleus collisions. *Phys. Lett.*, B773:408–411, 2017, 1705.08856.
- [5] Measurement of charged particle spectra in pp collisions and nuclear modification factor $R_{\rm pPb}$ at $\sqrt{s_{NN}} = 5.02$ TeV with the ATLAS detector at the LHC. 9 2016.
- [6] Kari J. Eskola, Petja Paakkinen, and Hannu Paukkunen. Non-quadratic improved Hessian PDF reweighting and application to CMS dijet measurements at 5.02 TeV. *Eur. Phys. J. C*, 79(6):511, 2019, 1903.09832.
- [7] Petja Paakkinen. Light-nuclei gluons from dijet production in proton-oxygen collisions. *Phys. Rev. D*, 105(3):L031504, 2022, 2111.05368.
- [8] Rabah Abdul Khalek, Rhorry Gauld, Tommaso Giani, Emanuele R. Nocera, Tanjona R. Rabemananjara, and Juan Rojo. nNNPDF3.0: Evidence for a modified partonic structure in heavy nuclei. 1 2022, 2201.12363.

Aleksas Mazeliauskas

Bibliography II

- [9] Kari J. Eskola, Petja Paakkinen, Hannu Paukkunen, and Carlos A. Salgado. EPPS21: A global QCD analysis of nuclear PDFs. 12 2021, 2112.12462.
- [10] P. Duwentäster, L. A. Husová, T. Ježo, M. Klasen, K. Kovařík, A. Kusina, K. F. Muzakka, F. I. Olness, I. Schienbein, and J. Y. Yu. Impact of inclusive hadron production data on nuclear gluon PDFs. *Phys. Rev. D*, 104:094005, 2021, 2105.09873.
- [11] Michael L. Miller, Klaus Reygers, Stephen J. Sanders, and Peter Steinberg. Glauber modeling in high energy nuclear collisions. Ann. Rev. Nucl. Part. Sci., 57:205–243, 2007, nucl-ex/0701025.
- [12] Kari J. Eskola, Ilkka Helenius, Mikko Kuha, and Hannu Paukkunen. Shadowing in inelastic nucleon-nucleon cross section? *Phys. Rev. Lett.*, 125(21):212301, 2020, 2003.11856.
- [13] Florian Jonas and Constantin Loizides. Centrality dependence of electroweak boson production in PbPb collisions at the LHC. 4 2021, 2104.14903.
- [14] Peter Brockway Arnold. Simple Formula for High-Energy Gluon Bremsstrahlung in a Finite, Expanding Medium. Phys. Rev. D, 79:065025, 2009, 0808.2767.
- [15] Vardan Khachatryan et al. Charged-particle nuclear modification factors in PbPb and pPb collisions at $\sqrt{s_{\rm N \, N}} = 5.02$ TeV. JHEP, 04:039, 2017, 1611.01664.
- [16] ALICE physics projections for a short oxygen-beam run at the LHC. May 2021.
- [17] David d'Enterria, Kari J. Eskola, Ilkka Helenius, and Hannu Paukkunen. Confronting current NLO parton fragmentation functions with inclusive charged-particle spectra at hadron colliders. *Nucl. Phys. B*, 883:615–628, 2014, 1311.1415.

Bibliography III

- [18] Marco Bonvini. Probabilistic definition of the perturbative theoretical uncertainty from missing higher orders. Eur. Phys. J. C, 80(10):989, 2020, 2006.16293.
- [19] Claude Duhr, Alexander Huss, Aleksas Mazeliauskas, and Robert Szafron. An analysis of Bayesian estimates for missing higher orders in perturbative calculations. JHEP, 09:122, 2021, 2106.04585.
- [20] Kari J. Eskola, Petja Paakkinen, Hannu Paukkunen, and Carlos A. Salgado. EPPS16: Nuclear parton distributions with LHC data. *Eur. Phys. J.*, C77(3):163, 2017, 1612.05741.

Backup

Semi-inclusive measurements and their nPDF dependence

Inclusive normalization depends on different x range than coincidence cross-section!

nNNPDF3.0 [8], EPPS21 [9], nCTEQ15WZ+SIH [10]

Oxygen run in LHC Run 3

- Short \sim 1 week run (new ion species for the LHC).
- Tentatively planned in 2024.
- Precise collision energy to be decided.

	pp	$pPb,\ pp$	PbPb,pp	00	pO
\sqrt{s}	13.6 TeV	8 TeV	5.02 TeV	6.37 TeV	9 TeV

• Currently no corresponding pp reference planned for OO and pO.

How to make accurate R_{AA} measurements without a pp reference?

Minimum-bias jet R_{AA}^{j} (no energy loss) in OO at $\sqrt{s_{NN}} = 7 \text{ TeV}$

We calculated partonic jet cross-sections with NNLOJET code.

HKMPSW (2020) [1, 2]

 $\mathcal{O}(5\%)$ deviation from unity.

$$R_{\rm AA} = \frac{\textcircled{3}}{16^2 \times \bullet \textcircled{3}}$$

- Cancellation of scale uncertainties
- Good perturbative convergence
- Cancellation of parton shower and hadronization effects

Evidence for medium induced pheonomena in small systems

15 / 15

Soft physics assumptions in $R_{\rm AA}$ normalization

Miller, Revgers, Sanders, Steinberg (2007) [11]

Nuclear overlap function $\langle T_{AA} \rangle = \frac{\langle N_{coll} \rangle}{\sigma_{nn}^{inel}}$ is the ratio of *model-dependent quantities* number of binary collisions $\langle N_{coll} \rangle$ inelastic nucleon-nucleon cross-section $\sigma_{nn}^{\text{inel}}$ EPPS16 1.3 gaussian profile / black disk 1.2 1.1 nCTEO15 N^X_{coll}/N^{defat} Fitted σ_{nn}^{inel} 0.9 $\sigma_{\rm pp}^{\rm inel}$ 0.8 $Q = p_T / 2$ 0.7 PhPh 0.6 50 60 2070 200 0 400 600 800 1000 $\sigma_{\rm nn}^{\rm inel}$ [mb] N

Eskola, Helenius, Kuha, Paukkunen (2020)[12], see also Jonas, Loizides (2021) [13]

This way nominally high- p_T observable R_{AA} depends on soft physics assumptions.

Sources of theory uncertainties in the baseline

$$R_{AA, \text{ min bias}}^{h,j}(p_T) = \frac{1}{A^2} \frac{d\sigma_{AA}^{h,j}/dp_T(\mu_R,\mu_F)}{d\sigma_{pp}^{h,j}/dp_T(\underbrace{\mu_R,\mu_F})} \xleftarrow{\text{oxygen nPDF (EPPS16+CT14)}}{\xleftarrow{\text{proton PDF (CT14)}}$$

- I Overlap of LO, NLO scale "uncertainties" ⇒ perturbative convergence. Expect cancellation of scale dependence in the ratio.
- Propagate uncertainties in proton and nuclear modified PDFs. Expect partial cancellation in the ratio.
- **3** Hadronization, showering and fragmentation uncertainties. Independent of the collision system and should cancel.

Predicting energy loss in small systems

Energy loss model predictions in light ion collisions

- Estimation of expected signal is important for the feasibility of the discovery.
- We will use a simple framework to explore various ideas from >20 years of energy loss modelling in heavy-ion collisions.
- We then extrapolate predictions to OO collisions.
- The goal: conservative theory prediction of energy loss.
- For simplicity, we study energy loss only for charged hadron spectra (not jets).

Medium induced gluon radiation

The presence of background QCD medium modifies the parton shower

Simple BDMPS-Z reformulation due to Arnold [14]

$$\omega \frac{dI^s}{d\omega} - \omega \frac{dI^s_{\mathsf{vac}}}{d\omega} = \frac{\alpha_s}{\pi} x P_{s \to g}(x) \ln \left| c \left[\hat{\bar{q}} \right] \right|.$$

- Medium modelling enters through quenching parameter $\hat{q}(t, \vec{x}(t))$
- $d = \hat{\bar{q}}/T^3$ free-model parameter

Predicting hadron energy loss in light-ion collisions

HKMPSW (2020) [1, 2]

- 1 Background medium
 - Smooth $T(\tau, r)$ profile.
 - Width rescaled to $\left< R^2 \right>$
 - Hydro-like and free-streaming expansions
- 2 Energy loss models
 - BDMPS-Z à la Arnold [14]
 - $dE/dx \sim \tau^{0.4}T^{1.2}$
 - $dE/dx \sim \tau T^3$
 - stopping à la holography

Models fitted to a single data point $R^h_{\rm AA}(p_T=54.4\,{\rm GeV})$ $_{\rm CMS\,[15]}.$

0-100% PbPb $\sqrt{s_{NN}} = 5.02 \,\text{TeV}$ 1.0 0.8 0.6 _ ช∕ 0.4 0.2 0.0 50 100 150 200 p_T (GeV)

Dependence on system size and momentum are then model predictions.

Validation of a simple model centrality dependence in PbPb

Good central to mid-central description of hadron energy loss.

Modelling uncertainties in PbPb and OO

We drastically varied background medium evolution and energy loss formulas.

The spread of different scenarios—theoretical model uncertainty.

Aleksas Mazeliauskas

Minimum-bias hadron R_{AA}^h in OO at $\sqrt{s_{NN}} = 7 \text{ TeV}$

Measurable energy loss signal in $10 \text{ GeV} < p_T < 50 \text{ GeV}!$

pQCD comparison to measured data

NNLO jet spectra ant 5.02 and 7 TeV.

Good NNLO agreement with data. Some systematic deviations at NLO.

pQCD comparison to measured data

NLO hadron spectra ant 5.02 and 7 TeV.

Large systematic deivations of absolute spectra, but constant with energy.

known problem of fragmentation functions. see d'Enterria et al. [17]

MCMC fits to anchor energy spectra

MCMC confidence intervals reproduce statistical uncertainties.

Modification in $p \mathsf{Pb}$

None of the models can explain $R^h_{p\rm Pb} \sim 1.1$

Estimating Missing Higher Order (MHO) terms

What is the accuracy of the truncated perturbative series?

• Unphysical dependence on renormalization (μ_R) and factorization scales (μ_F)

$$\sigma = \sigma^{\mathsf{N}^{n}\mathsf{LO}}\left(\mu_{R}, \mu_{F}\right) + \mathcal{O}\left(\mathsf{N}^{n+1}\mathsf{LO}\right).$$

- Central scale μ_0 typical Q for the hard process, e.g., jet p_T
- Estimate MHO by varying μ_R, μ_F by factors $k_i = 1/2, 1, 2$ around μ_0
- Scale "uncertainty" is defined as the envelope of scale variation

$$[\sigma_{\min}, \sigma_{\max}]^{\mathsf{N}^{n}\mathsf{LO}} = [\min_{i,j} \sigma^{\mathsf{N}^{n}\mathsf{LO}} \left(k_{i}\mu_{0}, k_{j}\mu_{0} \right), \max_{i,j} \sigma^{\mathsf{N}^{n}\mathsf{LO}} \left(k_{i}\mu_{0}, k_{j}\mu_{0} \right)].$$

• Nested scale bands at LO, NLO,... \implies "good" perturbative convergence

For Bayesian approach to estimating MHO, see Bonvini (2020) [18], Duhr, Huss, AM, Szafron (2021) [19]

Estimating PDF and nPDF uncertainties

We use oxygen nPDF from EPPS16 [20] with CT14 proton PDF reference.

- Central observable value is computed with the central PDF set.
- \blacksquare PDF error = the spread of values evaluated over ~ 100 PDF error sets.
- Expect partial cancellation of PDF uncertainties in the ratio.

$$R_{AA, \text{ min bias}}^{h,j}(p_T) = \frac{1}{A^2} \frac{d\sigma_{AA}^{h,j}/dp_T}{d\sigma_{pp}^{h,j}/dp_T} \xleftarrow{} \text{oxygen nPDF (EPPS16+CT14)} \xleftarrow{} \text{proton PDF (CT14)}$$

Importance of nPDF effects in small and large systems

Small systems (pA) provide valuable information on nPDFs

See plenary by Paakkinen, Fri, 18:50

• If negligible jet-quenching in pPb \implies jet observables can be used in nPDF fits.

Even in large systems nPDF effects (and their uncertainties) can be relevant. *Different pA measurements will help to constrain A-dependence.*

Z-bosons as a hard parton luminosity meter

Can we construct more precise observables for detecting energy loss?

- Z-bosons experimentally clean observable unaffected by the medium
- Requires large $O(1pb^{-1})$ statistics (long run, not planned in Run 3).
- Ratio of Z boson cross-section partonic luminosity meter $\sigma_{pp}^Z/\sigma_{AA}^Z \sim 1/A^2$.
- Use Z bosons to normalize jet R_{AA}^j :

$$R_{\mathsf{AA},Z}^{h,j}(p_T) = \frac{\sigma_{pp}^{Z}(\mathsf{CT14})}{\sigma_{\mathsf{AA}}^{Z}(\mathsf{EPPS16+CT14})} \times \frac{d\sigma_{\mathsf{AA}}^{j}/dp_T(\mathsf{EPPS16+CT14})}{d\sigma_{pp}^{j}/dp_T(\mathsf{CT14})}$$

- Luminosity uncertainties cancel.
- Expect the nPDF uncertainties to cancel too.

${\cal Z}$ boson weighted nuclear modification factor

Large nPDF uncertainties in the double ratio!

$$\langle f_g(x_1, Q) f_g(x_2, Q) \rangle$$

Surprising nPDF uncertainty *anticorrelation* between Z-boson and jet Bjorken-x.

Light-ion collisions are different from heavy-ion collisions!

	$^{16}O^{8+}$	$^{40}{\rm Ar}^{18+}$	${}^{40}\text{Ca}^{20+}$	78 Kr ³⁶⁺	129 Xe ⁵⁴⁺	$^{208}\text{Pb}^{82+}$
γ	3760.	3390.	3760.	3470.	3150.	2960.
$\sqrt{s_{\rm NN}}$ /TeV	7.	6.3	7.	6.46	5.86	5.52
$\sigma_{\rm had}/{\rm b}$	1.41	2.6	2.6	4.06	5.67	7.8
$\sigma_{\mathrm{BFPP}}/\mathrm{b}$	2.36×10^{-5}	0.00688	0.0144	0.88	15.	280.
$\sigma_{\rm EMD}/{\rm b}$	0.0738	1.24	1.57	12.2	51.8	220.
$\sigma_{\rm tot}/{\rm b}$	1.48	3.85	4.18	17.1	72.5	508.
N_b	1.58×10^{10}	3.39×10^9	2.77×10^9	9.08×10^8	4.2×10^8	1.9×10^8
$\epsilon_{\rm xn}/\mu{ m m}$	2.	1.8	2.	1.85	1.67	1.58
$f_{\rm IBS}/({\rm m~Hz})$	0.168	0.164	0.184	0.18	0.17	0.167
W_b/MJ	175.	84.3	76.6	45.2	31.4	21.5
$L_{ m AA0}/ m cm^{-2}s^{-1}$	9.43×10^{31}	4.33×10^{30}	$2.9 imes 10^{30}$	3.11×10^{29}	6.66×10^{28}	1.36×10^{28}
$L_{ m NN0}/ m cm^{-2}s^{-1}$	2.41×10^{34}	$6.93 imes 10^{33}$	4.64×10^{33}	1.89×10^{33}	1.11×10^{33}	5.88×10^{32}
$P_{\rm BFPP}/{\rm W}$	0.0199	0.601	0.935	11.	60.6	350.
$P_{\rm EMD1}/W$	32.	55.6	52.2	78.3	107.	141.
$\tau_{\rm L0}/{ m h}$	6.45	11.6	13.1	9.74	4.96	1.57
$T_{\rm opt}/h$	5.68	7.62	8.08	6.98	4.98	2.8
$\langle L_{\rm AA} \rangle \ {\rm cm}^{-2} {\rm s}^{-1}$	4.54×10^{31}	2.45×10^{30}	1.69×10^{30}	1.68×10^{29}	2.95×10^{28}	3.8×10^{27}
$\langle L_{\rm NN} \rangle \ {\rm cm}^{-2} {\rm s}^{-1}$	1.16×10^{34}	3.93×10^{33}	2.71×10^{33}	1.02×10^{33}	4.91×10^{32}	1.64×10^{32}
$\int_{\text{month}} L_{AA} \text{dt/nb}^{-1}$	5.89×10^{4}	3180.	2190.	218.	38.2	4.92
$\int_{\text{month}} L_{\text{NN}} \text{dt/pb}^{-1}$	1.51×10^{4}	5090.	3510.	1330.	636.	213.
$R_{\rm had}/\rm kHz$	1.33×10^{5}	1.12×10^4	7540.	1260.	378.	106.
μ	10.6	0.893	0.598	0.1	0.03	0.00842

Aleksas Mazeliauskas

15 / 15

Beam loss cross-section subdominant to hadronic cross-section

Machine	Ion	Beam Energy	Design Luminosity	σ (e^- capture)	$\sigma(GDR)$
RHIC	gold	$100~{\rm GeV/n}$	$2\times 10^{26} cm^{-2} s^{-1}$	45 b	58 b
RHIC	iodine	$104~{\rm GeV/n}$	$2.7\times 10^{27} cm^{-2} s^{-1}$	6.5 b	15 b
RHIC	silicon	$125~{\rm GeV/n}$	$4.4\times 10^{28} cm^{-2} s^{-1}$	$1.8 { m ~mb}$	150 mb
LHC	lead	$2.76~{\rm TeV/n}$	$1\times 10^{27} cm^{-2} s^{-1}$	$102 \mathrm{b}$	113 b
LHC	niobium	$3.1~{\rm TeV/n}$	$6.5\times 10^{28} cm^{-2} s^{-1}$	3.1 b	10 b
LHC	calcium	$3.5~{\rm TeV/n}$	$2\times 10^{30} cm^{-2} s^{-1}$	$36 { m ~mb}$	$800 { m ~mb}$
LHC	oxygen	$3.5~{\rm TeV/n}$	$3 \times 10^{31} cm^{-2} s^{-1}$	$81~\mu{\rm b}$	$37 \mathrm{~mb}$

Light-ion collisions are different from heavy-ion collisions!

Coincidence measurement of Z + j

$$R_{AA,Z}^{h,j}(p_T) = \frac{\sigma_{pp}^{Z,p_T^Z > 30 \text{ GeV}}(\text{CT14})}{\sigma_{AA}^{Z,p_T^Z > 30 \text{ GeV}}(\text{EPPS16}+\text{CT14})} \times \frac{d\sigma_{AA}^{j+Z}/dp_T(\text{EPPS16}+\text{CT14})}{d\sigma_{pp}^{j+Z}/dp_T(\text{CT14})}.$$

$$I_{AA,Z}^{00 \sqrt{S}} = \frac{100^{10} \sqrt{S} \text{ m}^{-7} \text{ TeV}}{100^{10} \sqrt{S} \text{ m}^{-7} \text{ TeV}} = \frac{100^{10} \sqrt{S} \text{ m}^{-7} \text{ TeV}}{100^{10} \sqrt{S} \text{ m}^{-7} \text{ TeV}} = \frac{100^{10} \sqrt{S} \text{ m}^{-7} \text{ TeV}}{100^{10} \sqrt{S} \text{ m}^{-7} \text{ TeV}} = \frac{100^{10} \sqrt{S} \text{ m}^{-7} \text{ TeV}}{100^{10} \sqrt{S} \text{ m}^{-7} \text{ TeV}} = \frac{100^{10} \sqrt{S} \text{ m}^{-7} \text{ TeV}}{100^{10} \sqrt{S} \text{ m}^{-7} \text{ TeV}} = \frac{100^{10} \sqrt{S} \text{ m}^{-7} \text{ TeV}}{100^{10} \sqrt{S} \text{ m}^{-7} \text{ TeV}} = \frac{100^{10} \sqrt{S} \text{ m}^{-7} \text{ TeV}}{100^{10} \sqrt{S} \text{ m}^{-7} \text{ TeV}} = \frac{100^{10} \sqrt{S} \text{ m}^{-7} \text{ TeV}}{100^{10} \sqrt{S} \text{ m}^{-7} \text{ TeV}} = \frac{100^{10} \sqrt{S} \text{ m}^{-7} \text{ TeV}}{100^{10} \sqrt{S} \text{ m}^{-7} \text{ TeV}} = \frac{100^{10} \sqrt{S} \text{ m}^{-7} \text{ TeV}}{100^{10} \sqrt{S} \text{ m}^{-7} \text{ TeV}} = \frac{100^{10} \sqrt{S} \text{ m}^{-7} \text{ TeV}}{100^{10} \sqrt{S} \text{ m}^{-7} \text{ TeV}} = \frac{100^{10} \sqrt{S} \text{ m}^{-7} \text{ TeV}}{100^{10} \sqrt{S} \text{ m}^{-7} \text{ TeV}} = \frac{100^{10} \sqrt{S} \text{ m}^{-7} \text{ TeV}}{100^{10} \sqrt{S} \text{ m}^{-7} \text{ TeV}} = \frac{100^{10} \sqrt{S} \text{ m}^{-7} \text{ TeV}}{100^{10} \sqrt{S} \text{ m}^{-7} \text{ TeV}} = \frac{100^{10} \sqrt{S} \text{ m}^{-7} \text{ TeV}}{100^{10} \sqrt{S} \text{ m}^{-7} \text{ TeV}} = \frac{100^{10} \sqrt{S} \text{ m}^{-7} \text$$

15 / 15

Z boson normalized

${\boldsymbol{Z}}$ boson nuclear modification

Reweighting with CMS di-jet data

Validation of simple model centrality dependence in PbPb

Good central to mid-central description of hadron energy loss.

Aleksas Mazeliauskas

Validation of simple model centrality dependence in PbPb

Good central to mid-central description of hadron energy loss.

Validation of simple model centrality dependence in PbPb

Good central to mid-central description of hadron energy loss.