EBERHARD KARLS
GOETH Eﬁ UNIVERSITAT

UNIVERSITAT :
UNIVERSITAT  TUBINGEN

FAR ==x

vlousremarer CBM performance for (multi-)strange hadron measurements

*  KRAKOW

"0 20272 using Machine Learning techniques

Shahid Khan, Olha Lavoryk, Oleksii Lubynets, Viktor Klochkov, Andrea Dubla, llya Selyuzhenkov
for the CBM Collaboration

e  The production of strange quarks is sensitive to the properties of created matter in heavy-ion collisions

CBM

e CBM, due to its high interaction rate capability, has the possibility of reconstructing rare multi-strange particles and hypernuclei
e A hyperon is the most abundantly produced strange baryon at FAIR energies
e For CBM performance studies use, collisions generated with URQMD and DCM-QGSM-SMM:

Au+Au collisions at p, ., = 12A GeV/c (Is = 4.93), mbias, 600k, Multiplicity bin (200-400)
° CBM simulation: GEANT4 Monte Carlo, CA tracking, KFParticle within ComRoot framework

A° > p+m decay reconstruction parameters:

° szrim - squared distance between the daughter track and /p

the primary vertex divided by its Covariance Matrix (CV) X2prim1 1

PV Xgeo | DCA
e DCA - distance of closest approach between proton & pion tracks X2 orim2 T
° ngeo- squared distance between daughter tracks divided by CV
T

e L/AL - distance between primary and secondary vertex divided by CV

Selection criteria are optimized multi-dimensionally, non-linearly and in an automatized way with Machine Learning algorithms
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Boosted Decision Trees (XGBoost Library) Implementation

Data preparation:

o DCM-QGSM-SMM sample as simulated data (MC signal)
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o UrQMD sample is treated as experimental data (MC background)

o Acandidates sample is cleaned by removing those with non physical values

o A candidates are divided into train and test samples

o BDT model is trained on train set and then applied on train and test sets, separately

Train-test dataset
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Model applied to the train-test samples
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Optimize A\ candidates selection for significance via
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Approximate Median Significance (AMS)
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ROC curve train (area = 0.9983)
—— ROC curve test (area = 0.9982)
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Yield extraction procedure

Signal shape: Double Sided Crystal Ball (DSCB) function: Gaussian with power law tails
Background shape: 2nd order polynomial

Fitting procedure
1. Fit DSCB to the MC signal distribution within 4¢ around the mean
2.  Fit background with po/2(m) in the excluded signal region (m<1.108 & m>1.13)
3. Fit with DSCB+pol2 within the full range of inv. mass with the fit parameters initialized by Steps 1 and 2

Step 1 Step 2 Step 3
B s = 3775.65883 +0.00000; mc = 3773.000
10°E P 103 | 2,=1091 my: = 1.11562 + 0.000

g Y E 61 =0.00144 +0.00006
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Performance of the A yield extraction

Corrected yield of primary A (black circles) reproduces simulated input (blue triangles)

10-20% excess in the extracted A yield (red squares)— requires feed-down correction

Outlook
e  Multi-classifier BDT to separate primary and secondary A\
e Evaluate systematic uncertainties
o  XGB selection variation
o Yield extraction procedure
e ML application for yield measurement for K * — ' and E —Am

Julian Nowak (WUT) Matgorzata Karabowicz (WUT)
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