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Scaling in the kinetic theory of an expanding gluon plasma
We consider the small-angle scattering approximation [1] of QCD EKT [2]:

,

where  ,  , .

We have verified [3] that this theory exhibits scaling: , 
with scaling exponents , similar to QCD EKT [4].
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Let us now derive why scaling will appear for a generic initial condition [3].

Writing , with  arbitrary rescalings, and 
setting ,  undergoes time evolution  with

,

where . This Hamiltonian has eigenstates & eigenvalues

,        

The evolution of  is made adiabatic by finding  such that .

Energy gap  the ground state will dominate after a transient time.
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We have chosen  to set 
the ground state energy 

α = γ + 2β − 1
ℰ0,0 = 0

Adiabaticity

*Depending on the initial condition, the excited states with  may take a long time to decay if . That the distribution reaches the 
ground state for the transverse part within the time interval wherein the small-angle scattering approximation applies is thus an extra assumption.

n = 0 |β | ≪ 1
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Flow of  under 
time evolution

γ, β

This allows one to derive evolution equations for the scaling exponents:
over − occupied (AS ≫ 1 ⟺ ′�′�f ≫ 1′�′�) : dilute (AS ≪ 1 ⟺ ′�′�f ≪ 1′�′�) :

∂yβS = (γS + 4βS − 1 + ·lCb) βS ,

∂yγS = (3γS + 2βS − 1 + ·lCb)(γS − 1) .

∂yβS = (2βS + ·lCb) βS ,

∂yγS = (2γS + ·lCb)(γS − 1) .

over — occupied dilute

Flow equations for the scaling exponents

y = ln τ/τI



Comparison with numerical solutions to kinetic theory
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Comparison with 
small-angle 

scatterings with 
ℐb ≠ 0

Comparison with 
QCD EKT [4]

Consistent deviation from BMSS [5] 
scaling exponent  in all 
theories!


Our prediction:
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Flow equations (solid) versus QCD EKT (dashed)

Form of initial condition plots:
∀

f(τI) =
σ0

g2
s

exp (−
p2

⊥ + ξ2p2
z

Q2
s )

ξ = 2



•Adiabatic hydrodynamization [6] is an extremely useful paradigm to 
describe the early stages of the ‘bottom-up’ thermalization scenario [5] in 
a heavy ion collision.

The analysis of the system is greatly simplified in terms of the slow 
modes of the system.

It allows one to capture deviations from the fixed point scaling 
exponents in the BMSS ‘bottom-up’ scenario [5] systematically.

•These results, together with the relaxation-time approximation analysis of 
[6], suggest that the entire hydrodynamization process of a weakly-
coupled gluon plasma can be understood in terms of adiabatic evolution.

• Further generalizations in sight: more general collision kernels; including 
radial expansion in the kinetic equation. Also, identify the adiabatic 
aspects of the hydrodynamization process in strongly-coupled theories.

Summary and conclusions
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