Typical time evolution of the gluon occupation number in a weakly-coupled Bjorken-expanding plasma
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We consider the small-angle scattering approximation [1] of QCD EKT [2]:
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We have verified [3] that this theory exhibits scaling: f(p,.p.;7) = Ag(r) wg (p,/B(z), p./ Cs(7)
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Let us now derive why scaling will appear for a generic initial condition [3].
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Writing f(p,,p,;7) = A() w (p \/B(7), pZ/C(T);T), with A(z), B(r), C(z) arbitrary rescalings, and
setting .7, = 0, w({, &; 1) undergoes time evolution 9,, w = — Zw with
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o The evolution of w is made adiabatic by finding B(z), C(z) such that g = g, = 1.

o Energy gap — the ground state will dominate after a transient time.
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This allows one to derive evolution equations for the scaling exponents:
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ummary and conclusions

® Adiabatic hydrodynamization [6] is an extremely useful paradigm to
describe the early stages of the ‘bottom-up’ thermalization scenario [5] In
a heavy IOﬂ CO”ISIOH. [6] J. Brewer, L. Yan and Y. Yin, “Adiabatic hydrodynamization in rapidly-expanding quark-gluon plasma,” Physics Lett. B 816 (2021) 136189

o The analysis of the system is greatly simplified in terms of the slow
modes of the system.

o It allows one to capture deviations from the fixed point scaling
exponents in the BMSS ‘bottom-up’ scenario [5] systematically.

® These results, together with the relaxation-time approximation analysis of
[6], suggest that the entire hydrodynamization process of a weakly-
coupled gluon plasma can be understood in terms of adiabatic evolution.

® Further generalizations in sight: more general collision kernels; including
radial expansion in the kinetic equation. Also, identify the adiabatic
aspects of the hydrodynamization process in strongly-coupled theories.



