Space-time structure of 3+1D color fields in heavy-ion collisions

Andreas Ipp, David I. Müller, Sören Schlichting, Pragya Singh

Institute for Theoretical Physics, TU Wien, Austria

dmueller@hep.itp.tuwien.ac.at

Quark Matter 2022

April 6, 2022

Based on A. Ipp, D. I. Müller, S. Schlichting, P. Singh, "Space-time structure of 3+1D color fields in high energy nuclear collisions" Phys.Rev.D 104 (2021) 11, 114040 arXiv:2109.05028

Der Wissenschaftsfonds.

D. I. Müller, Quark Matter 2022

Color glass condensate

Color glass condensate (CGC): effective theory for high energy QCD

- ▶ Hard partons: classical color density ρ drawn from probability functional $W[\rho]$
- Soft partons: classical color fields $A_{\mu} \propto 1/g$ (large occupation number)

Nucleus "A" described by color current $\mathcal{J}_A^-(x^+, \mathbf{x}_\perp) = \rho_A(x^+, \mathbf{x}_\perp)$ in terms of light cone coordinates $x^{\pm} = (x^0 \pm x^3)/\sqrt{2}$ and transverse coordinates $\mathbf{x}_\perp = (x, y)$

- Yang-Mills eqs. D_μF^{μν} = J^ν
 Reduce to Poisson eq. (cov. gauge ∂_μA^μ = 0)
 -Δ_⊥A⁻_A(x⁺, **x**_⊥) = ρ_A(x⁺, **x**_⊥), A⁺_A = Aⁱ_A = 0
- Solve with infrared regulator m

$$\mathcal{A}_A^-(x^+, \mathbf{x}_\perp) = \phi_A(x^+, \mathbf{x}_\perp) = \int \frac{d^2 \mathbf{k}_\perp}{(2\pi)^2} \frac{\tilde{\rho}_A(x^+, \mathbf{k}_\perp)}{\mathbf{k}_\perp^2 + m^2} e^{-i\mathbf{k}_\perp \cdot \mathbf{x}_\perp}$$

Extension to 3+1D: finite width and structure

D. I. Müller, Quark Matter 2022

Weak field expansion

Glasma: collision of two CGCs, solution to $D_{\mu}F^{\mu\nu} = J^{\mu}_A + J^{\mu}_B \rightarrow$ lattice simulations

Weak field expansion: small color currents \mathcal{J}

- ▶ Background: single nuclei color fields $\mathcal{A}^{\mu}_{A/B} = \mathcal{O}(\mathcal{J}^{n}_{A/B})$, $n \ge 1$
- ▶ Perturbation: color field of the Glasma $a^{\mu} = \mathcal{O}(\mathcal{J}^n_A \mathcal{J}^m_B), m, n \ge 1$
- ▶ Iteratively solve YM eqs. $D_{\mu}F^{\mu\nu} = J^{\nu}$, $D_{\mu}J^{\mu} = 0$ in cov. gauge $\partial_{\mu}A^{\mu} = 0$

Energy-momentum tensor

$$T^{\mu\nu} = T^{\mu\nu}_A + T^{\mu\nu}_B + T^{\mu\nu}_{\rm mixed} + T^{\mu\nu}_{\rm perturbation}$$

3+1D color field solutions

Leading order limit (dilute) of color fields $a^{\mu} = \mathcal{O}(\rho_A \rho_B)$ with $\mathcal{A}^{\pm} = \phi_{A/B}$:

$$\begin{split} a^{+}(x) &= \frac{g}{2} f_{abc} t^{c} \int_{\mathbf{p}_{\perp},\mathbf{q}_{\perp}} \int_{0}^{+\infty} dz^{+} \int_{0}^{+\infty} dz^{-} \tilde{\phi}_{A}^{a} (x^{+} - z^{+}, \mathbf{p}_{\perp}) \tilde{\phi}_{B}^{b} (x^{-} - z^{-}, \mathbf{q}_{\perp}) \frac{\left(-(\mathbf{p}_{\perp} + \mathbf{q}_{\perp})^{2} + 2\mathbf{q}_{\perp}^{2}\right) z^{+}}{|\mathbf{p}_{\perp} + \mathbf{q}_{\perp}| \tau_{z}} J_{1} (|\mathbf{p}_{\perp} + \mathbf{q}_{\perp}| \tau_{z}) e^{-i(\mathbf{p}+\mathbf{q}) \cdot \mathbf{x}_{\perp}} \\ a^{-}(x) &= \frac{g}{2} f_{abc} t^{c} \int_{\mathbf{p}_{\perp},\mathbf{q}_{\perp}} \int_{0}^{+\infty} dz^{+} \int_{0}^{+\infty} dz^{-} \tilde{\phi}_{A}^{a} (x^{+} - z^{+}, \mathbf{p}_{\perp}) \tilde{\phi}_{B}^{b} (x^{-} - z^{-}, \mathbf{q}_{\perp}) \frac{\left(+(\mathbf{p}_{\perp} + \mathbf{q}_{\perp})^{2} - 2\mathbf{p}_{\perp}^{2}\right) z^{-}}{|\mathbf{p}_{\perp} + \mathbf{q}_{\perp}| \tau_{z}} J_{1} (|\mathbf{p}_{\perp} + \mathbf{q}_{\perp}| \tau_{z}) e^{-i(\mathbf{p}+\mathbf{q}) \cdot \mathbf{x}_{\perp}} \\ a^{i}(x) &= \frac{g}{2} f_{abc} t^{c} \int_{\mathbf{p}_{\perp},\mathbf{q}_{\perp}} \int_{0}^{+\infty} dz^{+} \int_{0}^{+\infty} dz^{-} \tilde{\phi}_{A}^{a} (x^{+} - z^{+}, \mathbf{p}_{\perp}) \tilde{\phi}_{B}^{b} (x^{-} - z^{-}, \mathbf{q}_{\perp}) i(\mathbf{p}_{\perp}^{i} - \mathbf{q}_{\perp}^{i}) J_{0} (|\mathbf{p}_{\perp} + \mathbf{q}_{\perp}| \tau_{z}) e^{-i(\mathbf{p}+\mathbf{q}) \cdot \mathbf{x}_{\perp}} \end{split}$$

▶ No assumptions made about ϕ_A and ϕ_B , except localization around $x^+ = 0$ and $x^- = 0$

- Not accounting for terms that appear near the light cone boundary
- Expressions describe full 3+1D structure, no boost-invariance!

Nuclear model with longitudinal structure

Simple generalization of McLerran-Venugopalan (MV) model with non-trivial longitudinal structure

$$\left\langle \rho_{A/B}^{a}(x^{\pm}, \mathbf{x}_{\perp}) \rho_{A/B}^{b}(x'^{\pm}, \mathbf{x}_{\perp}') \right\rangle = \underbrace{g^{2} \mu_{A/B}^{2}}_{\text{strength of color charges } Q_{s} \propto g^{2} \mu} \qquad \underbrace{T_{R}(\frac{x^{\pm} + x'^{\pm}}{2})}_{\text{strength of color charges } Q_{s} \propto g^{2} \mu} \underbrace{I_{s}(x^{\pm} - x'^{\pm})}_{\text{longitudinal profile Gaussian of width } R} \underbrace{I_{s}(x^{\pm} - x'^{\pm})}_{\text{longitudinal structure}} \underbrace{I_{$$

Comparison to 3+1D lattice simulations

- For Transverse pressure $p_T(\tau, \eta)$ as a function of space-time rapidity η and proper time τ
- ▶ Dilute approximation: a few hours on a desktop CPU (Monte Carlo integrator)
- Lattice simulations: days/weeks on a supercomputer (arXiv:1804.01995 and arXiv:2010.11172)
- **>** Dilute approximation overestimates at higher $g^2\mu/m$, rapidity profile less affected

Conclusions and outlook

What we have published so far (arXiv:2109.05028)

- ▶ 3+1D solutions to Yang-Mills equations valid at small ρ
- Orders of magnitude faster numerical evaluation vs. lattice simulations
- Investigate nuclear models with longitudinal structure
 - \rightarrow Glasma with rapidity η dependence

Next steps

- Simplified Glasma field strength tensor \checkmark
- GPU-based Monte Carlo integrator for more complicated nuclear models
 - ▶ Full Glasma energy-momentum tensor $T^{\mu\nu}$ ✓
 - $\blacktriangleright\,$ Transverse and longitudinal geometry, impact parameter ${\bf b}_\perp\,\checkmark\,$
- ▶ 3D nuclear model based on parton distribution functions (work in progress) 🗸
- Coupling to effective kinetic theory and hydrodynamics for phenomenological applications

