

Angular Momentum in HICs via SMASH

___ Motivation _____

- Large orbital angular momentum $L \sim \mathcal{O}(10^6 \hbar)$ in non-central HICs create global polarization of Λ hyperons at mid-rapidity
- Angular momentum of the fireball directly related to vorticity (spin-orbit coupling) as fundamental property of the QGP
- Dynamical description of L within a transport approach yields predictions where the biggest transfer of OAM to the QGP is expected

___ Our Approach ____

- Hadronic transport approach for a dynamical nonequilibrium description of HICs at low beam energies
- Including all hadrons up to $m \sim 2.35 \, GeV$
- Effective solution of the relativistic Boltzmann equation

$p^{\mu}\partial_{\mu}f_{i}(x,p) + m_{i}F^{\alpha}\partial_{\alpha}^{p}f_{i}(x,p) = C_{coll}^{i}$

Collisions

Maximal L Transfer

Nils Sass, Oscar Garcia-Montero, Marco Müller, Hannah Elfner

Collisions are performed at a finite distance according to the geometrical interpretation of the cross section

Energy dependence of impact parameter b_{max} for which The remaining angular momentum Lr becomes maximal

Fermi motion induces additional L into the system

___ System Size ____

• System size dependence of the ratio of the fireball's angular momentum over the initial angular momentum L_r / L₀

 More angular momentum is deposited at mid rapidity in more central collisions and at lower beam energies

Conclusion

- We find a maximum L_r impact parameter b_{max} which is nearly energy independent for a broad energy range, $b_{max} \in [4.5 \text{ fm}, 6.6 \text{ fm}]$
- We observe a higher transfer of initial angular momentum to the fireball at lower beam energies and in more central collisions.
- Future: Implementation of spin DoF to describe polarization in nuclear collisions

Insight into SMASH

General Setup

Geometric collision criterion

$$d_{trans} < d_{int} = \sqrt{\frac{\sigma_{tot}}{\pi}} \qquad d_{trans}^2 = (\vec{r}_a - \vec{r}_b)^2 - \frac{((\vec{r}_a - \vec{r}_b) \cdot (\vec{p}_a - \vec{p}_b))^2}{(\vec{p}_a - \vec{p}_b)^2}$$

 $\sigma \to \sigma \cdot N_{test}^{-1}$, $N \to N \cdot N_{test}$ Test particle method:

Initial Conditions

Sampling of the initial nuclei in coordinate space according to the Woods-Saxon distribution

$$\frac{dN}{d^3r} = \frac{\rho_0}{\exp\left(\frac{r-r_0}{d}+1\right)}$$

d: diffusiveness of the nucleus

 ρ_0 : nuclear ground state density

 $d \rightarrow 0$: Hard sphere limit

Nils Sass, Oscar Garcia-Montero, Marco Müller, Hannah Elfner

Fermi Motion

- Nuclei get additional momenta
- Nuclei are "stable" if additional potentials are turned on
- "Frozen" Fermi motion only considered for collision and turned off for propagation

Resonances

- Particles with widths < 10 keV treated as stable
- Unstable particles assigned a relativistic Breit-Wigner spectral function

$$\mathscr{A}(m) = \frac{2\mathscr{N}}{\pi} \frac{m^2 \Gamma(m)}{(m^2 - M_0^2)^2 + m^2 \Gamma(m)^2} \qquad \begin{array}{l} M_0: \text{ pole mass} \\ \Gamma(m): \text{ width function} \\ \mathscr{N}: \text{ normalization} \end{array}$$

• Decay width of two body decay $R \rightarrow ab$ by treatment of Manley et al.

$$\Gamma_{R \to ab} = \Gamma^0_{R \to ab} \frac{\rho_{ab}(m)}{\rho_{ab(M_0)}}$$

 $\rho_{ab}(m)$: mass integrals over resonance spectral functions

$$\Gamma^0_{R \to ab} = \Gamma_{R \to ab}(M_0)$$

http://smash-transport.github.io

Quark Matter 2022

)	
,				
	ζ			
				(m)
		1		
1	1 - 7 - 1	10 10	しゃ ひゃ・・	

Angular Momentum Evolution

- We observe a kink in the total angular momentum at the time when both nuclei collide
 - Broken angular momentum conservation

- For higher beam energies the kink occurs at smaller times due to higher nuclei rapidities
- Secondary collisions at higher beam energies shift the flattening of L_{sp} and L_r to later times

Angular Momentum Conservation

• At $\sqrt{s_{NN}} = 8.7 \,\text{GeV}$ protons collide elastically (~1/3) and inelastically (~2/3)

 Geometrical Interpretation of the cross section Additional momenta by Fermi motion potentially breaks angular momentum conservation in binary increase non-conservation of angular momentum in/elastic collisions

 Collective "loss" of angular momentum in Au-Au collisions amounts to 3.5% for small impact parameters

STAR Measurement

• Weak decay $\Lambda \rightarrow p + \pi^-$ emits proton predominantly in spin direction of Λ

• The (phase-space) averaged polarization is determined by the azimuthal angle distribution of the proton's momentum

Polarization

- Λ is identified by extrapolation of the measured daughter particles (p, π^-)
- invariant-mass distribution at the Λ mass

Quark Matter 2022

