DATA-DRIVEN EXTRACTION OF QUARK AND GLUON JET SUBSTRUCTURE IN PROTON-PROTON AND HEAVY-ION COLLISIONS

Yueyang Ying
Relativistic Heavy Ion Group
Massachusetts Institute of Technology

Work in collaboration with Jasmine Brewer, Yi Chen, and Yen-Jie Lee
April 4, 2022
What happens during a particle collision?

Particle collisions
- Collision “kicks out” a high-energy quark or gluon from the nuclei
- Quark/gluon then fragments and hadronizes into sprays of particles
- In heavy-ion collisions, high energy can create the quark-gluon plasma
- Formation of QGP leads to jet quenching

Our goal
- We want to understand how quark and gluon jets interact with the QGP in a data-driven way
- We use a method known as **topic modeling** in order to extract the quark and gluon base distributions:
- We apply the results to obtain quark/gluon jet substructure and observe the modification in the QGP

Two types of jet samples:
- **Y+jet**
- **dijet**

Both are mixtures of quark and gluon jets:

Constituent Multiplicity

Note: The proton-proton and heavy-ion events are simulated using the PYQUEN generator, with $p_T = 80$ GeV. We apply $80 < p_T < 100$ GeV and $|\eta_{jet}| < 1$ cuts to the events.
Distinguishing quark and gluon jets

Given the two input distributions:

\[p_{\gamma+\text{jet}}(x) = f_A p_1(x) + (1 - f_A) p_2(x) \]
\[p_{\text{dijets}}(x) = f_B p_1(x) + (1 - f_B) p_2(x) \]

We can express these as mixtures of the base distributions:

\[p_{\gamma+\text{jet}}(x) = f_A p_1(x) + (1 - f_A) p_2(x) \]
\[p_{\text{dijets}}(x) = f_B p_1(x) + (1 - f_B) p_2(x) \]

BUT! There are infinitely many ways to define the fractions and distributions here!

Thus, we impose a condition on the base distributions, known as mutual irreducibility.

Mutual irreducibility

- We cannot write \(p_1(x) = c \ p_2(x) + (1 - c) F \), where \(F \) is some probability distribution and \(0 < c \leq 1 \)
- At the limits, the samples are “pure” topic 1 or topic 2

\[\lim_{x \to x_{\min}} \frac{p_1(x)}{p_2(x)} = 0 \]
\[\lim_{x \to x_{\max}} \frac{p_2(x)}{p_1(x)} = 0 \]

Mutual irreducibility means \(\kappa = 0 \)!

Let us define:

\[\kappa_{mn} = \inf_x \frac{p_m(x)}{p_n(x)} \]

\[[\text{Komiske, et al., 1809.01140}] \]

\[[\text{Brewer, et al., 2008.08596}] \]

[Yueyang Ying 3]
Topic modeling procedure and results

If we can find:

\[
\kappa_{AB} = \inf \frac{p_{\gamma+\text{jet}}(x)}{p_{\text{dijets}}(x)}
\]

\[
\kappa_{BA} = \inf \frac{p_{\text{dijets}}(x)}{p_{\gamma+\text{jet}}(x)}
\]

Then, we can compute the base distributions:

\[
p_1(x) = \frac{p_{\gamma+\text{jet}}(x) - \kappa_{AB} p_{\text{dijets}}(x)}{1 - \kappa_{AB}}
\]

\[
p_2(x) = \frac{p_{\text{dijets}}(x) - \kappa_{BA} p_{\gamma+\text{jet}}(x)}{1 - \kappa_{BA}}
\]

We can sample for \(\kappa_{AB}\) and \(\kappa_{BA}\):

- Poor statistics at tails of distribution, where \(\kappa\) would be, lead to large uncertainties
- Thus, fit a model (sum of 4 skew-normal distributions) to the data, leveraging the rest of the distribution
- Use a sampling algorithm known as Markov Chain Monte Carlo (MCMC) to sample parameters that fit the data
- Sample for \(\kappa\) by finding the minimum of each MCMC fit ratio (shown on left)

Note: The “truth” labels are assigned by matching the jet to the nearest outgoing matrix element (in terms of angular distance) and represent an approximation of the quark/gluon truth.

[Brewer, et al., 2008.08596]
Extracting jet substructures and modification

Jet Shape

Transverse momentum as a function of radial distance from the jet axis

\[\rho(r) = \frac{1}{\delta r N_{\text{jet}}} \sum_{\text{tracks} \in \{r \leq r \leq \delta r\}} \frac{p_T^{\text{track}}}{p_T^{\text{jet}}} \]

Jet Fragmentation

Longitudinal energy distribution of tracks within a jet

\[\epsilon = \ln \left(\frac{1}{z} \right) \]
\[z = \frac{p_T}{p_T^{\text{jet}}} \cos \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \]
Extracting jet substructures and modification

Jet Mass

Invariant mass of the jet, calculated from the jet four-momentum

\[m = \sqrt{E^2 - |\vec{p}|^2} \]

Jet Splitting Fraction

Momentum ratio of the two leading subjets within the jet

\[z_g = \frac{p_{T,\text{subleading}}}{p_{T,\text{leading}} + p_{T,\text{subleading}}} \]

Massachusetts Institute of Technology

Yueyang Ying
THANK YOU
BACKUP SLIDES
Markov Chain Monte Carlo

- Each of parameters in our model has a probability distribution of its value
 - MCMC attempts to find this through sampling!

- Algorithm:
 - Initialize θ_0
 - For $t = 0, 1, 2, ..., n$:
 - Draw a tentative sample z_t from $Q(\theta|\theta_t)$
 - Accept new z_t with probability A:

 \[
 A = \min\left(1, \frac{P(z_t|D)Q(\theta_t|z_t)}{P(\theta_t|D)Q(z_t|\theta_t)}\right)
 \]
 - If z_t is accepted, then set $\theta_{t+1} \leftarrow z_t$
 - Else set $\theta_{t+1} \leftarrow \theta_t$
Extracting Kappas

MCMC Fit and Extracted Kappas

MCMC Fit and Extracted Kappas
Topic Modeling Results

Proton-proton

Input Histograms

Resulting Topics

Quark/Gluon Fractions

Heavy-ion

Input Histograms

Resulting Topics

Quark/Gluon Fractions

MC qg truth
Topic 1
Topic 2
Uncertainty

MC qg truth
Topic 1
Topic 2
Uncertainty