Computationally Efficient Description of QGP Medium Response Jet-by-Jet

Xiaojun Yao
MIT

Collaborators: Jorge Casalderrey-Solana, Guilherme Milhano, Daniel Pablos, Krishna Rajagopal

arXiv: 2010.01140, 220x.xxxxx

The 29th International Conference on Ultra-relativistic Nucleus-Nucleus Collisions (Quark Matter 2022)
Krakow, Poland, April 04–10, 2021
Motivations and Methods

• Understanding medium response to jet E-loss important for jet substructure phenomenology and studying thermalization process in QGP

• For E & \vec{P} deposition at each time step, use local flow velocity to boost to fluid rest frame, where jet wake evolution approximated by linearized hydro on top of Bjorken flow

• Solve linearized hydro on Bjorken flow in response to one-unit deposition of E & \vec{P} at the origin and store the solutions (templates)

• Take the amount of E deposited at each time step as weight, form linear combinations of templates, with proper boosts and rotations using local flows and high-energy parton direction, to obtain jet wake solution

• Cooper-Frye the solution on an event-by-event basis (50 events sampled from Glauber model) and compare with MUSIC (3+1D 2nd order viscous hydro)
Distribution of particles produced from wake

\(p_T \)

\(\phi \)

\(y \)
10 GeV parton

- Distribution of particles produced from wake
 - p_T
 - ϕ
 - y

50 GeV parton

- Distribution of particles produced from wake
 - p_T
 - ϕ
 - y
Averaged Results and Conclusions

50 GeV parton

- Reasonable agreement with MUSIC for $p_T > 1$ GeV; able to capture features of distributions in individual events

- Apply to real jets for phenomenology, improve jet wake description in hybrid model