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We seek to understand how jets in 
heavy-ion collisions are different than 
jets in proton-proton collisions

How much information is in the nuclear modification factor of jets?
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In heavy-ion collisions the substructure of jets is modified compared to a rescaled proton-proton
baseline due to the presence of the Quark-Gluon Plasma (QGP). In this work, we employ machine
learning techniques to quantify how much information is contained in the nuclear modification
factor of jet substructure observables. We formulate the question about the information content as
a binary classification problem where the machine is trained to learn information that distinguishes
jets in proton-proton and heavy-ion collisions. We perform the classification task using i) deep sets
which includes Infrared-Collinear (IRC) safe and unsafe information, ii) a complete basis of IRC safe
jet substructure observables which is passed to a Dense Neural Network (DNN) and iii) from the
trained DNN we identify optimal observables using symbolic regression. As a proof of concept, we
perform our analysis using parton shower event generator models but we expect that the proposed
framework can be applied directly to the raw data for which we outline possible future directions.
We expect that the automated design of suitable observables for heavy-ion collisions can provide
guidance for extracting information about the QGP from jet substructure data. In addition, the
proposed framework can also be applied to event-wide data samples in heavy-ion collisions and at
the future Electron-Ion Collider.

I. INTRODUCTION

Jets are highly energetic and collimated sprays of par-
ticles which are observed in the detectors of high-energy
scattering experiments such as RHIC and the LHC. They
directly reflect the underlying quark and gluon degrees
of freedom which acquire a large transverse momentum
due to a hard-scattering event and subsequently form a
jet due to multiple soft and collinear emissions. The area
of jet substructure is aimed at quantifying and utilizing
the radiation pattern inside jets [1–3]. Jets and their
substructure have been studied both in pp and heavy-
ion AA collisions. In heavy-ion collisions the Quark
Gluon Plasma (QGP) is formed which is a state of
matter where quarks and gluons are unbound and the
QGP is conjectured to have existed shortly after the Big
Bang. By comparing vacuum jets (pp) to their coun-
terparts in heavy-ion collisions which have traversed the
hot and dense nuclear matter, information about the
QGP can be obtained. The modification of jets in heavy-
ion collisions is typically quantified in terms of the nu-
clear modification factor which is given by the ratio of
the heavy-ion cross section and a rescaled pp baseline
RAA = d�AA/(hNcollid�pp). From the inclusive jet cross
section, it was found that only roughly half of the jets are
produced in heavy-ion collisions compared to pp []. In
addition, various jet substructure observables have been
measured in AA collisions. It turns out that some ob-
servables are consistent with no modification while oth-
ers are significantly modified due to the presence of the
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FIG. 1. Schematic illustration of jets in pp (left) and heavy-
ion AA (right) collisions. Interactions with the Quark-Gluon
Plasma can lead to a modification of the jet substructure.
By training a classifier (fully supervised), the machine learns
the relevant information that distinguishes jets in pp and AA
collisions.

QGP []. Significant theoretical e↵ort have been made to
compute and predict the modification of jet observables
in heavy-ion collisions [4–18].

(Cite somewhere [19])

In general, we identified guiding principles to design
suitable jet substructure observables to obtain informa-
tion about the QGP. The first criterion is driven by theo-
retical considerations in pp collisions. For example, often
observables are chosen which Infrared Collinear (IRC)
Safe which means that they can be calculated in per-

Goal: Use ML to discriminate pp from AA jets in 
a way that is theoretically interpretable

Binary classification problem

All methods shown here can be 
applied directly on experimental data
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IRC-safe vs. IRC-unsafe physics
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IRC-unsafe information contains 
significant discriminating power

We compare the IRC-unsafe network 
(PFN) to an IRC-safe network (EFN)

Figure 2. Classification performance of pp vs. AA jets quantified in terms of ROC curves using
IRC-unsafe PFNs and IRC-safe EFNs. The jet samples in pp and AA collisions are obained from
Pythia 8 [68] and Jewel [70, 71].

layers with 100 nodes each. For each dense layer we use the ReLU activation function [106]

and we use the softmax activation function for the final output layer of the classifier. We

train the neural networks using the Adam optimizer [107] with learning rates ranging from

10�3 to 10�4. We use the binary cross entropy loss function [108], and train for 10 epochs

with a batch size of 500. We find no significant changes in performance when changing the

size of the layers, latent space dimension, learning rate, and batch size by factors of 2-10.

For each reconstructed jet, we record the transverse momentum, rapidity and az-

imuthal angle (pT i, yi,�i) of each particle i inside the jet. Following Ref. [86], we perform

a preprocessing step to simplify the training process. We rescale the transverse momenta

of each particle inside the jet with the total transverse momentum of the observed jet. In

addition, we center the rapidity and azimuthal angles of the particles in the jet with respect

to the jet direction. The jet axis is determined using the E-scheme [109]. Here we only

consider PFNs without PID and we leave a more detailed exploration for future work. We

benchmark our setup using the quark- vs. gluon-jet data set provided in Ref. [110] as well

as our own generated quark and gluon samples with PYTHIA8, finding compatible results

with Ref. [86].

Figure 2 shows the ROC curve for pp vs. AA jets using the PFNs and EFNs. The

AUC is 0.860 for the PFN and 0.675 for the EFN. Since PFNs can e�ciently make use

of all the available information, we use them as a benchmark for the other classification

techniques discussed below.

– 8 –

f(p1, . . . , pM) = F (
M

∑
i=1

ziΦ ( ̂pi))
Classifier DNNs
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Figure 4. ROC curves for jets in pp vs. AA collisions using the N -subjettiness basis. For
comparison we also show the result obtained using the classifier based on PFNs.

jets, however, for pp vs. AA jets we expect that there is significant information contained

in the soft physics due to sensitivity to the surrounding medium in AA case. We note

that this observation is generally in agreement with the large di↵erence between PFNs and

EFNs found in Section 3.1. Our findings suggest that it will be necessary to measure new

soft-sensitive jet substructure observables in heavy-ion collisions to fully make use of the

available information recorded by the experimental collaborations. This information can

be accessed by N -subjettiness observables for large values of N . We emphasize again that

while the conclusions here are model-dependent, we are confident that a similar analysis

can be performed with experimental data. In addition, we note that the studies here do

not include the heavy-ion background, which poses a major obstacle in measurements of

soft physics. We will discuss the impact of the heavy-ion underlying event in more detail

in Section 6.

3.2.2 Energy Flow Polynomial basis

EFPs were introduced in Ref. [96] as an (over)complete linear basis of IRC-safe jet sub-

structure observables. They are multi-particle correlators which can be indexed with multi-

graphs G = (V,E) with V vertices and E edges. For a jet with M particles, the EFPG is

defined as

EFPG =
MX

i1=1

· · ·

MX

iV =1

zi1 · · · ziV
Y

(k,l)2E

✓ikil . (3.5)
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Significant information in 
quenched jets up to M ≈ 25
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DNN with  N-subjettiness 
basis observables as input:

3M − 4

How many observables does one need 
to measure to saturate information?
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Observable design
By balancing the tradeoff of discriminating power and complexity, 
we can design the most strongly modified calculable observable

Figure 8. Distributions of observables in pp and AA collisions which have already been mea-
sured by experimental collaborations and examples of the machine-learned observables using the
N -subjettiness and EFP basis.

The corresponding ROC curve and the distribution of this ML-learned observable are shown

in Figs. 7, 8, respectively. We find that despite the simplicity of the machine-learned EFP

observable, it outperforms the other “traditional” observables. The intriguing aspect of

observables which involve a relatively small number of EFPs, as in Eq. (4.7), are that they

are generally analytically tractable within perturbative QCD.

5 Information loss: the underlying event and background subtraction

The large, fluctuating underlying event produced by the QGP causes notorious experi-

mental and theoretical challenges in heavy-ion collisions – in particular, by limiting which

observables can be reliably measured. Typically, background subtraction procedures are

applied in order to mitigate this problem. Systematic uncertainties associated with the

subtraction are estimated in order to adequatly capture the lack of exact knowledge of

which particles arise from the underlying event, and which from the jet.

From the perspective of information content, this presents two distinct mechanisms by

which the information in jet quenching can be lost. First, the fluctuating underlying event

can be viewed as a source of noise. One cannot distinguish particles arising from underlying

– 18 –

ML-assisted observable design provides guidance to experiments and theory — 
can then measure and calculate designed observables using traditional methods
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“Symbolic regression” 
using Lasso 

Approximate classifier with 
small number of features

Figure 7. ROC curves for the Lasso regression using the N -subjettiness basis and EFPs. For
comparison we also show the result for typical observables in heavy-ion collisions.

The regularization parameter � provides a handle to balance the performance of the

classifier with the simplicity of the resulting observable. When � is small, a product

observable with strong classification performance but many terms will be found, and as

� is increased, a product observable with decreased classification performance but fewer

terms will be found. The convergence of the Lasso regression can be slow for a large

parameter space which is why we limit ourselves here to a relatively small number of input

observables. For several values of �, we find the following observables without background

for M = 15 in our Monte Carlo model studies:

� =0.5 : O
ML
N�sub = ⌧ (1)14 , (4.3)

� =0.1 : O
ML
N�sub =

⇣
⌧ (1)10

⌘0.071⇣
⌧ (1)11

⌘0.157⇣
⌧ (1)14

⌘0.649
⌧ (2)14 , (4.4)

� =0.01 : O
ML
N�sub =

⇣
⌧ (0.5)2

⌘0.608⇣
⌧ (2)4

⌘�0.186
⇥ ...⇥ ⌧ (2)14 (23 terms) . (4.5)

Since we can rescale the exponents by an overall factor without changing the performance

of the classifier, we choose the exponent of the rightmost factor in Eq. 4.2, in this case ⌧ (�)14 ,

as 1 for all values of �.

We find that the Lasso regression generally prefers large values of N . For su�ciently

large values of �, we find that the Lasso regression always picks only one observable which

turns out to be one of the N -subjettiness observables with the largest allowed value of N .

When � is lowered gradually, the Lasso regression adds additional N -subjettiness observ-

able with intermediate values of N . If we further lower �, the Lasso regression eventually

– 16 –



James Mulligan, LBNL Quark Matter 2022 April 6, 2022

Figure 9. ROC curves for PFNs trained with (i) PYTHIA8/JEWEL jets, (ii) jets clustered from a
combination of PYTHIA8/JEWEL events with a thermal background, with event-wide constituent
subtraction applied (Rmax = 0.25), (iii) PYTHIA8/JEWEL jets only considering jet constituents
with pT > 1 GeV, and (iv) jets clustered from a combination of PYTHIA8/JEWEL events with a
thermal background, only considering jet constituents with pT > 1 GeV, with event-wide constituent
subtraction applied (Rmax = 0.25).

event from those correlated to the jet, and so to the extent that the noise distribution

overlaps with the signal distribution, the ability to distinguish the two is irrecoverably

reduced. Second, background subtraction algorithms themselves can cause information

loss. Since background subtraction inherently involves removal of particles from the jet,

and one does not have exact knowledge of which particles arise from the underlying event,

this procedure strictly results in information loss.

The jet classification methods used in Section 3 can be used to evaluate the magnitude

of each of these contributions. Within the context of the parton shower models considered,

we assess the overall impact of the underlying event on the jet classification performance

by comparing a PFN trained only on the hard jet particles to a PFN trained on the

combination of jet and background particles (after performing constituent subtraction).

Figure 9 shows that there is a dramatic decrease in the classification power due to the

presence of the underlying event. We also plot PFNs trained on jet particles with pT >

1 GeV. Comparing the ROC curves with and without this requirement, we find that in the

case without background, a large discrimination power resides in the soft physics – whereas

in the case with background, the presence of soft information makes no di↵erence. That is,

in the presence of background, su�ciently soft discrimination is no longer useful – and the

discrimination is dominated by hard physics. This observation presents a delicate challenge

– 19 –

Information loss due to background
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Delicate challenge: soft information crucial, yet 
background prevents from being accessed

Figure 11. ROC curves comparing the performance with (i) Hard jet particles only, (ii) Hard jet
particles and background particles, with constituent subtraction applied (for two di↵erent values of
Rmax, and (iii) Hard jet particles and background particles, without any background subtraction
applied

possible, even to the extent of unfolding full events and thereby enabling the training of a

classifier directly on corrected particles.

There are several additional challenges in performing these measurements compared

to the Monte Carlo studies presented above. First, the detector conditions between the

proton-proton and heavy-ion data taking periods may be di↵erent – and the classifier will

naively learn these di↵erences. Second, in the pp � AA jet sample, one must ensure that

only soft particles – and not hard jets – enter the distribution from the embedded heavy-ion

event. Third, the size of the jet sample is limited by the available statistics recorded by

the experiment, which in turn can limit the performance of the classifier. These challenges

are each surmountable, and we are optimistic that such an analysis can be performed at

the LHC.

We propose that each of the three complementary studies in Sections 3-5 can be per-

formed on experimental data:

• Measuring the ROC curve. The measured ROC curve can serve as an observable

that can be compared to Monte Carlo event generators. Moreover, the distribution

of information content with complete sets of jet substructure observables can provide

a di↵erential test of jet quenching models, to the extent that highly soft-sensitive

observables, such as high-N N -subjettiness or high-dimension EFPs, can be reliably

measured in the presence of the heavy-ion underlying event.

– 22 –

New metric to assess background 
subtraction algorithms
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Discriminating power is highly reduced by 
the fluctuating underlying event

Background subtraction algorithms 
remove small but significant information


