## Multivariate Sensitivity Analysis of Jet Substructure Observables to Quenching

#### Looking at 2D correlations and how they change

- Which correlations are sensitive to medium modification?
- Which correlations are robust to uncorrelated background?

### Kullback–Leibler Divergence

Expectation value of Difference Log Likelihood:

$$KL = \sum p(x_i) \log \left[ \frac{p(x_i)}{q(x_i)} \right]$$

#### **Bas Hofman**





# **Correlation Modification: Quenching & Background**

# How do our 2D correlations change?

- Jewel vacuum vs. with quenching
- More yellow  $\rightarrow$  more modified
- Jewel vacuum vs. embedded
- Signal embedded into a LHC-like uncorrelated background
- More blue  $\rightarrow$  more robust



Bas Hofman 🛛 Multivariate Sensitivity Analysis of Jet Substructure Observables to Quenching Quark Matter 2022 2 / 5

## **Selecting Best 2D Correlations**





#### Quenching

Robust and sensitive to quenching with Nsubjettines  $\tau$  and Angularities

#### Recoil

Additionally Mass and SoftDrop Mass very sensitive to recoil

## Example of Selected Correlation: $au_1$ vs. Angularity

- Robust to uncorrelated background
- Sensitive even when correlation coefficient similar



and choose observables from drop down menu



4/5



Bas Hofman 🖾 Multivariate Sensitivity Analysis of Jet Substructure Observables to Quenching Quark Matter 2022

## **Towards Various Implementations**

#### Versatile method

- Probing physics effect (e.g. recoil, resolution length, ...)
- Differentiating between models
- Comparing models to data
- Fully data driven study of jet quenching using pp and PbPb data

Probing medium recoil: Mass vs. SoftDrop Mass  $\rightarrow$ 



