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Approaches to lattice QCD at finite µB

Z =

∫
DAα detM(Aα, µ,m)e−

1
4

∫
Tr FαβFαβ

where M = γαDα + m + γ0µ is the (discretized) Dirac-operator.

Importance sampling works if detM is real and positive:

� chemical potential µ = 0

� purely imaginary chemical potentials: Reµ = 0

� isospin chemical potential: µu = −µd

If not: complex action problem → desperate times, desperate measures

Approaches to non-zero µ suffer from additional serious problems. E.g.

� Taylor and imaginary µ: analytic continuation problem

� Reweighting from µ = 0: overlap problem

� Complex Langevin: convergence issues

Here: a method where the only problem is the sign problem

If the sign problem is dealt with by sufficient statistics, the results are reliable, and

errors (on a fixed lattice) are statistical only. 1



Phase and sign reweighting

Fields: U Target theory: Zt Simulated theory: Zs

Zt =

∫
DU wt(U) wt(U) ∈ C

Zs =

∫
DU ws(U) ws(U) > 0
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〈
wt

ws

〉−1
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Two problems that are exponentially hard in the volume can arise:

�
wt
ws

∈ C → the complex action problem became a sign problem

� Tails of ρ( wt
ws

) long → overlap problem

� The overlap problem is avoided if the weight come from a compact space

→ phase reweighting

ws = wPQ = | detM|e−Sg and Zt/Zs = 〈cos Arg M〉PQ
→ sign reweighting

ws = wSQ = |Re detM|e−Sg and Zt/Zs = 〈sign cos Arg M〉SQ
� In these cases the severity of the sign problem is measured by Zt/Zs

2



The severity of the sign problem

� Statistics required ∝ 1/(strength of the sign problem)2

� Sign quenched ≈ 2.5 factor less statistics from this estimate

� Model: wrapped Gaussian with σ2(µ) = − 4
9
χud

11 (T )(LT )3µ̂2
B

� Const. strength of the sign problem for const. (LT )3 (µB
T

)2
(roughly)

� For LT = 16/6 ≈ 2.7 (for T = 140MeV this is L ≈ 3.8fm) the sign

problem is managable for the entire RHIC Beam Energy Scan range
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The renormalized chiral condensate
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� Left: µB/T = 0, 1.5, 1.5i and 130MeV ≤ T ≤ 165MeV (T scan)

� Similar rescalings in the imaginary µB direction:

W-B: PRL 126 (2021) 23, 232001; W-B: PRL 125 (2020) 5, 052001;

� Also works at real µB → no sign of a strengthening crossover

� Right: T = 140MeV and 0 ≤ µB ≤ 380MeV (µB scan)

� The direct method penetrates the region where errors from analytic

continuation blow up!
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Summary

� Methods to study finite density QCD are typically not bottlenecked

by the sign problem itself but other effects (analytic continuation for

Taylor or Imµ, overlap for reweighting from µ = 0)

� Observables sensitive to criticality are unknown for µB/T ≥ 1.5

� We advocate a reweighting method that is free from the overlap

problem in the weights and is therefore bottlenecked by the sign

problem itself

� The sign problem is managable for the RHIC BES range

� Method penetrates the region where extrapolation methods are not

that predictive

� First physics results

� Active research: cutting the costs with algorithmic tricks and a 2D

scan of the T − µB plane
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