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1. QCD at finite baryochemical potential µB

Despite decades of effort, the determination of the phase diagram of strongly interacting
matter remains an unsolved problem. From the theoretical side, due to the strongly coupled
nature of the theory, a fully non-perturbative, first principles approach - such as lattice QCD
- is mandatory. While lattice QCD has revealed much about the case of zero baryochemical
potential µB = 0 - e.g. that the QCD transition in the early universe was not a true phase tran-
sition, but a crossover [1] - the properties of QCD matter at non-zero baryochemical potential
remain largely unknown. It is conjectured that the crossover line eventually turns into a line
of first order transitions at a critical endpoint. Confirmation of this picture has not yet been
achieved, neither by first principle calculations nor by experiment, despite this confimation
being a major goal of heavy ion physics. Currently available lattice QCD results at finite den-
sity are based on analytic continuation from zero [2] or purely imaginary [3] baryochemical
potential. Due to the ill-posed nature of analytic continuation, such methods have severe lim-
itations. Here we use more direct reweighting methods to study thermodynamics at µB > 0.
This poster is based on Ref. [4].

2. Phase and sign reweighting

Given a target theory, with field variables U , path integral weights wt(U), and partition function
Zt =

∫
DU wt(U), using simulations in a theory with real and positive path integral weights

ws(U) and partition function Zs =
∫
DU ws(U), via reweighting:

〈O〉t =

〈
wt
ws
O
〉

s

〈
wt
ws

〉−1

s
, 〈O〉x =

1

Zx

∫
DU wx(U)O(U) , (1)

where x may stand for t (target theory) or s (simulated theory). When the target theory is
lattice QCD at non-zero chemical potential µ, the target weights are given by

wt(U) = detM(U, µ)e−Sg(U), (2)

where Sg is the gauge action, detM denotes the fermionic determinant, including all quark
types with their respective mass terms, as well as rooting in the case of staggered fermions,
and the integral is over the gauge fields U . The weights wt have fluctuating phases: this is
the infamous sign problem of lattice QCD. In addition to this problem, generic reweighting
methods also suffer from an overlap problem: the probability distribution of the reweighting
factor wt/ws has generally a long tail, which cannot be sampled efficiently in standard Monte
Carlo simulations. It is actually the overlap problem, rather than the sign problem, that consti-
tutes the immediate bottleneck in QCD when one tries to extend reweighting results to finer
lattices [5]. This overlap problem in the weights wt/ws is not present if they take values in a
compact space. The most well-known of these approaches is phase reweighting [6], where
the simulated theory - the so called phase quenched theory - has path integral weights:

ws = wPQ = | detMud(µ)
1
2| detMs(0)

1
4e−Sg. (3)

In this case the reweighting factors are pure phases: (wt/ws)PQ = eiθ, where θ = Arg detM .
We will contrast this approach with sign reweighting, where the simulated - sign quenched -
ensemble has weights:

ws = wSQ = |Re detMud(µ)
1
2| detMs(0)

1
4e−Sg. (4)

In this case the reweighting factor are signs: (wt/ws)SQ = ε ≡ sign cos θ = ±1, provided that
the target theory is the one with wt = Re detMe−Sg. The replacement wt → Rewt is not
permitted for arbitrary expectation values, but it is allowed for i) observables satisfying either
O(U∗) = O(U) or ii) observables obtained as derivatives of the partition function with respect
to real parameters, such as the chemical potential or the quark mass. Fortunately, these are
exactly the observables on needs for bulk thermodynamics.
A key step in addressing the feasibility of our approach is estimating the severity of the sign
problem. In the phase quenched (PQ) ensemble the severity of the sign problem is mea-
sured by the average phase factor 〈eiθ〉PQ

T,µ , while in the sign quenched (SQ) ensemble it

is measured by 〈ε〉SQ
T,µ The probability distribution of the phases θ = arg detM in the phase

quenched theory, PPQ(θ), controls the strength of the sign problem in both ensembles. A sim-
ple estimate can then be obtained with a wrapped Gaussian approximation of PPQ(θ), with the
chemical potential dependence of the width given by a leading order Taylor expansion in µB.
In this model the severity of the sign problem can be calculated analytically [4]. We compare
the results from this model to the simulated severity of the sign problem in both ensembles in
Fig. 1. The model matches the actual simulation results well, it is therefore straightforward to
estimate the required statistics for a given volume and the chemical potential a priori.
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Figure 1: The strength of the sign problem as a function of µB/T at T = 140 MeV (left) and
as a function of T at µB/T = 1.5 (right). A value close to 1 shows a mild, while a value close
to 0 indicates a severe sign problem. Data for sign reweighting (black) and phase reweighting
(orange) are from direct simulations. Predictions of the Gaussian model are also shown.

3. Simulation setup

We simulated the sign and phase quenched ensembles for 2+1 flavors of rooted staggered
fermions, with a tree-level Symanzik improved gauge action, and two steps of stout smearing
with ρ = 0.15 on the gauge links fed into the fermion determinant. We use physical quark
masses. The scale is set with the kaon decay constant. We studied 163× 6 lattices at various
temperatures T and light-quark chemical potential µu = µd = µl = µ = µB/3 with a zero
strange quark chemical potential µs = 0, corresponding to a strangeness chemical potential
µS = µB/3. We performed a scan in µB at fixed T = 140 MeV, and a scan in temperature at
fixed µB/T = 1.5. Simulations were performed by modifying the RHMC algorithm at µB = 0 by
including an extra accept/reject step that takes into account the factor |Re detM(µ)|/ detM(0)
or | detM(µ)|/ detM(0).

4. Observables and numerical results
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Figure 2: The renormalized chiral condensate (left) and the light quark number-to-light quark
chemical potential ratio (right) as a function of temperature at µB/T = 1.5. In the insets, col-
lapse plots are shown in the variable T · (1 +κ

(µB
T

)2
), with κ ≈ 0.012 for the chiral condensate

and κ ≈ 0.016 for the quark number. In the left panel the value of the condensate at the
crossover temperature at µB = 0 is also shown (by a purple horizontal line).
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Figure 3: The renormalized chiral condensate (left) and the light quark number-to-light quark
chemical potential ratio (right) as a function of (µB/T )2 at temperature T = 140 MeV. Data
from simulations at real µB (black) are compared with analytic continuation from imaginary
µB (blue). In the left panel the value of the condensate at the crossover temperature at µB = 0
is also shown (purple horizontal line). The simulation data cross this line at µB/T ≈ 2.2.

The (bare) light-quark chiral condensate is defined as

〈ψ̄ψ〉T,µ =
1

Z(T, µ)

∂Z(T, µ)

∂mud
=
T

V

1

〈ε〉SQ
T,µ

〈
ε

∂

∂mud
ln |Re detM |

〉SQ

T,µ
. (5)

From the bare condensate, the renormalized condensate was obtained with the prescription
〈ψ̄ψ〉R(T, µ) = −mud

f 4π

[
〈ψ̄ψ〉T,µ − 〈ψ̄ψ〉0,0

]
. We also calculated the light quark density

χl1 ≡
∂
(
p/T 4

)

∂ (µ/T )
=

1

V T 3

1

Z(T, µ)

∂Z(T, µ)

∂µ̂
=

1

V T 3〈ε〉SQ
T,µ

〈
ε
∂

∂µ̂
ln |Re detM |

〉SQ

T,µ
. (6)

Our results for a temperature scan between 130 MeV and 165 MeV at real chemical potential
µB/T = 1.5, 0 and 1.5i are shown in Fig. 2. We also show that a rescaling of the temperature
axis of the form T → T

(
1 + κ

(µB
T

)2
)

collapses the curves into each other. Such a simple
rescaling indicates that up to µB/T = 1.5 the chiral crossover does not get narrower, which
is what one would expect in the vicinity of a critical endpoint. Our results for the chemical
potential scan at a fixed temperature of T = 140 MeV are shown in Fig. 3. We have per-
formed simulations at µB/T = 1, 1.5, 2, 2.2, 2.5. The sign-quenched results are compared with
the results of analytic continuation from imaginary chemical potentials. To demonstrate the
magnitude of the systematic errors of such an extrapolation we considered two fits. (i) As
the simplest ansatz, we fitted the data with a cubic polynomial in µ̂2

B =
(µB
T

)2 in the range
µ̂2
B ∈ [−10, 0]. (ii) As an alternative, we also and ansätze for both

〈
ψ̄ψ
〉
R and χl1/µ̂l based

on the fugacity expansion p/T 4 =
∑
nAn cosh(nµl/T ), fitting the data in the entire imaginary-

potential range µ̂2
B ∈

[
−(6π)2, 0

]
using respectively 7 and 6 fitting parameters. Fit results are

also shown in Fig. 3; only statistical errors are displayed. While sign reweighting and analytic
continuation give compatible results, in the upper half of the µB range the errors from sign
reweighting are an order of magnitude smaller. In fact, sign reweighting can penetrate the
region µ̂B > 2 where the extrapolation of many quantities is not yet possible with standard
methods [7, 8].

5. Summary

Most lattice studies of hot and dense QCD matter rely on extrapolation from zero or imag-
inary chemical potentials. The ill-posedness of numerical analytic continuation puts severe
limitations on the reliability of such methods. We studied the QCD chiral transition at finite
real baryon density with the more direct phase and sign reweighting approaches. We sim-
ulated up to a baryochemical potential-temperature ratio of µ/T = 2.7, covering the RHIC
Beam Energy Scan range, and penetrating the region where methods based on analytic con-
tinuation are unpredictive.This opens up a new window to study QCD matter at finite µB from
first principles.
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