Corrections to the hadron resonance gas from lattice QCD and their effect on fluctuation-ratios at finite density*

Paolo Parotto, Pennsylvania State University
April 6, 2022
Quark Matter 2022

*based on PRD 104 (2021) 094508

with:
The ideal Hadron Resonance Gas (HRG) model simply sums over contributions from all known hadronic resonances:

\[P(T, \hat{\mu}) = \sum_{i \in \text{hadrons}} P_i(T, \hat{\mu}) = -\frac{T}{V} \sum_{i \in \text{hadrons}} \ln Z_i(T, \hat{\mu}) \]

While overall successful in describing QCD thermodynamics, increased precision in lattice results suggest small deviations.

Due to charge conjugation symmetry, an expansion in the fugacity \(e^{\mu} = e^{(B\mu_B + S\mu_S)} \) yields:

\[P(T, \hat{\mu}_B, \hat{\mu}_S) \simeq \sum_{i \in \text{hadrons}} P_i(T) e^{(B_i \hat{\mu}_B + S_i \hat{\mu}_S)} = \sum_{j,k} P_{BS}^{jk}(T) \cosh(j \hat{\mu}_B - k \hat{\mu}_S) \]

In an ideal hadron gas, only nonzero contributions come from:

- \(P_{BS}^{00} \): \(\pi, f, \omega, \rho, \ldots \)
- \(P_{BS}^{01} \): \(K, \ldots \)
- \(P_{BS}^{10} \): \(p, n, \Delta, \ldots \)
- \(P_{BS}^{11} \): \(\Lambda, \Sigma, \ldots \)
- \(P_{BS}^{12} \): \(\Xi, \ldots \)
- \(P_{BS}^{13} \): \(\Omega, \ldots \)

In general, additional terms exist, due to composite or exotic objects, or interactions

- \(P_{BS}^{20} \): \(p-p, \ldots \)
- \(P_{BS}^{21} \): \(p-\Lambda, \ldots \)
- \(P_{BS}^{02} \): \(K-K, \ldots \)
- \(P_{BS}^{22} \): \(\Lambda-\Lambda, p-\Xi, \ldots \)
- \(P_{BS}^{1, -1} \): pentaquark (e.g. \(uudd\bar{s}, \ldots \))
- and so on...
Lattice simulations, not currently possible at finite (real) chemical potential, can be done at imaginary chemical potential ($\mu_a = i \hat{\mu}_a$). In this case, one gets a Fourier expansion:

$$P(T, \hat{\mu}_B, \hat{\mu}_S) = \sum_{j,k} P_{jk}^{BS}(T) \cos(j \hat{\mu}_B - k \hat{\mu}_S)$$

We performed a 2D scan in the chemical potentials plane at $(\mu_B, \mu_S) = \frac{\pi}{8}(i, j)$, with $i = 0, ..., 15$, $j = 0, ..., 8$ (144 points) for $T = 145, 150, 155, 160$ MeV.
The fugacity/Fourier expansion coefficients

We calculated different observables containing the $P_{ij}^{BS}(T)$, temperature-by-temperature, at all simulation points:

\[
\begin{align*}
\text{Im} \chi_{10}^{BS} &= \sum_{j,k} j P_{jk}^{BS}(T) \sin(j \hat{\mu}_B^{I} - k \hat{\mu}_S^{I}) \\
\text{Im} \chi_{01}^{BS} &= \sum_{j,k} (-k) P_{jk}^{BS}(T) \sin(j \hat{\mu}_B^{I} - k \hat{\mu}_S^{I}) \\
\chi_{20}^{BS} &= \sum_{j,k} j^2 P_{jk}^{BS}(T) \cos(j \hat{\mu}_B^{I} - k \hat{\mu}_S^{I}) \\
\chi_{11}^{BS} &= \sum_{j,k} (-jk) P_{jk}^{BS}(T) \cos(j \hat{\mu}_B^{I} - k \hat{\mu}_S^{I}) \\
\chi_{02}^{BS} &= \sum_{j,k} k^2 P_{jk}^{BS}(T) \cos(j \hat{\mu}_B^{I} - k \hat{\mu}_S^{I})
\end{align*}
\]

At each T, we perform a global fit to determine the $P_{ij}^{BS}(T)$.

- We see in general a mild N_τ-dependence, meaning discretization errors are under control.
- At most temperatures, most contributions are non-zero. **Interactions and exotic states do play a role.**
- We can then reconstruct the pressure and its derivatives also at finite (real) $\hat{\mu}_B$.

\[\chi^2/N_{\text{dof}} \approx 13/6\]
Fugacity expansion: fluctuation ratios at real $\hat{\mu}_B$

i. A proxy for baryon-strangeness correlation: In PRD 101 034506 we proposed $\sigma_\Lambda^2 / (\sigma_K^2 + \sigma_\Lambda^2)$ to be a good proxy for $\chi_{11}^{BS} / \chi_2^S$, even after including some experimental effects. The inclusion of multi-kaon interaction terms P^{BS}_{02}, P^{BS}_{03} has a small effect, reinforcing predictions from ideal hadronic model.

ii. Comparison with STAR data: We are able to compare to χ_B^3 / χ_B^1 and χ_B^4 / χ_B^2 at different energies. Results are consistent with Taylor expansions (PRD 101 074502 from HotQCD). Notably, fluctuations in the experiment seem not to deviate largely from QCD matter in equilibrium.

(Extrapolated fixing $n_S = 0$)