Bayesian inference on quark matter from observations of neutron stars

János Takátsy ELTE Institute of Physics Wigner RCP Péter Kovács Wigner RCP *PhD Advisor*

QM 2022, 4-10 April 2022

Collaborators: György Wolf, Jürgen Schaffner-Bielich

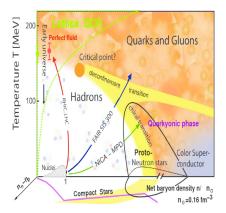
Supported by the ÚNKP-21-3 New National Excellence Program of the Ministry for Innovation and Technology.

Motiv	vatio:	n
000		

Results

Motivation: QCD and neutron stars

- We can not solve QCD at large densities from first principles due to the sign problem
- There are no experimental results in this region so far
- We may use effective models to try to describe strongly interacting matter
- Neutron stars may provide constraints for these models

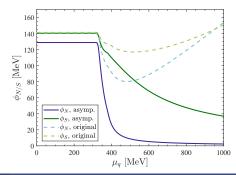


Ingredients for hybrid stars 1

We use the (axial)vector meson extended linear sigma model For hybrid stars we need the EoS at high density and T = 0:

- ▶ we need to introduce non-zero vector condensates
- \triangleright β -equilibrium + charge neutrality
- ▶ 5 field equations (no Polyakov-loop contribution)

 \hookrightarrow investigating the asymptotic behavior we get an additional constraint for the parameters \hookrightarrow we get $m_{\sigma} = 290$ MeV from parametrization



Motivation
000

Ingredients for hybrid stars 2

Hybrid stars also have a hadronic crust and outer core:

- ▶ at low densities we use hadronic EoS's (SFHo and DD2)
- we apply a smooth crossover between the two phases: 1. $\varepsilon(n)$ interpolation

$$\begin{aligned} \varepsilon(n) &= \varepsilon_H(n) f_-(n) + \varepsilon_Q(n) f_+(n), \\ f_{\pm}(n) &= \frac{1}{2} \left(1 \pm \tanh\left(\frac{n-\bar{n}}{\Gamma}\right) \right) \end{aligned}$$

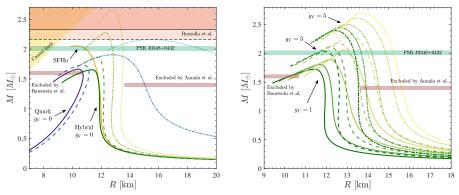
2. $p(\mu)$ interpolation with polynomial

$$p(\mu_B) = \sum_{m=0}^{N} C_m \mu_B^m, \quad \mu_{BL} < \mu_B < \mu_{BU},$$

the C_m coefficients are obtained by matching the pressure and its derivatives at the boundary points

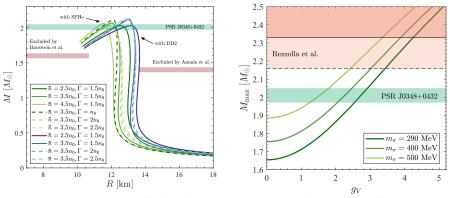
 $\hookrightarrow 4$ tunable parameters altogether: m_{σ} , g_V , \bar{n} , Γ (or μ_{BL} , μ_{BU}) \hookrightarrow we use the $\varepsilon(n)$ interpolation with $\bar{n} = 3.5n_0$ and $\Gamma = 1.5n_0$ as our standard choice

M - R curves for different g_V 's



 \hookrightarrow larger vector couplings result in larger hybrid star masses \hookrightarrow maximum masses are increased due to the intermediate density stiffening of the hybrid EoS's \hookrightarrow large sigma masses (brighter tones) are excluded by upper radius constraints Results

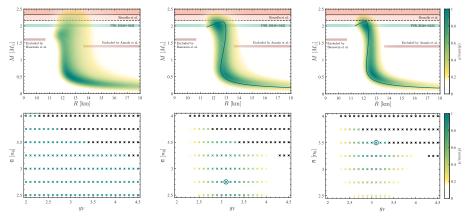
Effect of sigma mass and phase transition



 \hookrightarrow maximum mass hybrid stars seem to reside in a small region, independent of the phase transition parameters¹ \hookrightarrow with $m_{\sigma} = 290$ MeV g_V is constrained to $2.5 < g_V < 4.3$

¹similar results were found in Cierniak & Blaschke, EPJ ST 229, 3663 (2020)

Bayesian analysis results



 \hookrightarrow low sigma meson mass and a narrow phase transition are preferred

 \hookrightarrow the center of the phase transition is between $2.5n_0$ and $3.5n_0$

Summary

Conclusions

- we developed a model that describes vacuum phenomenology and finite temperature behaviour accurately
- ▶ we found that the maximum neutron star mass can be used to constrain the parameters of the model
- ▶ from our Bayesian anlysis we found that $g_V \approx 3 3.5$, a low sigma meson mass and a narrow phase transition are preferred
- we still want to do a deeper analysis of all the astrophysical constraints