Bayesian inference on quark matter from observations of neutron stars

János Takátsy
ELTE Institute of Physics
Wigner RCP

QM 2022, 4-10 April 2022

Collaborators: György Wolf, Jürgen Schaffner-Bielich

Supported by the ÚNKP-21-3 New National Excellence Program of the Ministry for Innovation and Technology.

János Takátsy takatsy.janos@wigner.hu
Motivation: QCD and neutron stars

- We can not solve QCD at large densities from first principles due to the sign problem.
- There are no experimental results in this region so far.
- We may use effective models to try to describe strongly interacting matter.
- Neutron stars may provide constraints for these models.
Ingredients for hybrid stars 1

We use the (axial) vector meson extended linear sigma model. For hybrid stars we need the EoS at high density and $T = 0$:

- we need to introduce non-zero vector condensates
- β-equilibrium + charge neutrality
- 5 field equations (no Polyakov-loop contribution)

→ a naive parametrization → chiral symmetry would be broken at high densities

→ investigating the asymptotic behavior we get an additional constraint for the parameters

→ we get $m_\sigma = 290$ MeV from parametrization
Ingredients for hybrid stars 2

Hybrid stars also have a **hadronic crust and outer core**:

- at low densities we use hadronic EoS’s (SFHo and DD2)
- we apply a smooth crossover between the two phases:
 1. \(\varepsilon(n) \) interpolation
 \[
 \varepsilon(n) = \varepsilon_H(n)f_-(n) + \varepsilon_Q(n)f_+(n),
 \]
 \[
 f_\pm(n) = \frac{1}{2} \left(1 \pm \tanh \left(\frac{n-\bar{n}}{\Gamma} \right) \right)
 \]
 2. \(p(\mu) \) interpolation with polynomial
 \[
 p(\mu_B) = \sum_{m=0}^{N} C_m \mu_B^m, \quad \mu_{BL} < \mu_B < \mu_{BU},
 \]
 the \(C_m \) coefficients are obtained by matching the pressure and its derivatives at the boundary points

\(\leftrightarrow \) 4 tunable parameters altogether: \(m_\sigma, g_V, \bar{n}, \Gamma \) (or \(\mu_{BL}, \mu_{BU} \))

\(\leftrightarrow \) we use the \(\varepsilon(n) \) interpolation with \(\bar{n} = 3.5n_0 \) and \(\Gamma = 1.5n_0 \) as our standard choice
$M - R$ curves for different g_V's

\rightarrow larger vector couplings result in larger hybrid star masses
\rightarrow maximum masses are increased due to the intermediate density stiffening of the hybrid EoS's
\rightarrow large sigma masses (brighter tones) are excluded by upper radius constraints
Effect of sigma mass and phase transition

\rightarrow maximum mass hybrid stars seem to reside in a small region, independent of the phase transition parameters1
\rightarrow with $m_\sigma = 290$ MeV g_ν is constrained to $2.5 < g_\nu < 4.3$

1 similar results were found in *Cierniak & Blaschke, EPJ ST 229, 3663 (2020)*
Bayesian analysis results

→ low sigma meson mass and a narrow phase transition are preferred

→ the center of the phase transition is between $2.5n_0$ and $3.5n_0$
Conclusions

- we developed a model that describes vacuum phenomenology and finite temperature behaviour accurately
- we found that the maximum neutron star mass can be used to constrain the parameters of the model
- from our Bayesian analysis we found that $g_V \approx 3 - 3.5$, a low sigma meson mass and a narrow phase transition are preferred
- we still want to do a deeper analysis of all the astrophysical constraints