ACCESSING SATURATION AND SUBNUCLEAR STRUCTURE WITH MULTIPICITY DEPENDENT J/Ψ PRODUCTION IN p+p AND p+Pb COLLISIONS

BJÖRN SCHENKE, BROOKHAVEN NATIONAL LABORATORY

BASED ON: F. SALAZAR, B. SCHENKE, A. SOTO-ONTOSO, PHYS.LETT.B 827 (2022) 136952, E-PRINT: 2112.04611

29TH INTERNATIONAL CONFERENCE ON ULTRA-RELATIVISTIC NUCLEUS-NUCLEUS COLLISIONS

APRIL 8, 2022
KRAKÓW, POLAND
Study production of J/ψ at different rapidities relative to charged hadrons at midrapidity.

Expect varying sensitivity to saturation, depending on probed Q_s and mass:

$m_{J/\psi} = 3.1\,\text{GeV}$

$m_{h_c} \approx 0.5\,\text{GeV}$

Most important physics in $Q_s^2(x, R_\perp) = T_A(R_\perp) S_\perp Q_s^2(x)$. Depends on rapidity ($x$) and transverse space.

Spatial dependence in $T_A(R_\perp)$ includes fluctuations of nucleon positions and nucleon substructure:

3 hot spots locations per nucleon sampled from

$P(R_{\perp,i}) = \frac{1}{2\pi B_{qc}} e^{-R_{\perp,i}/(2B_{qc})}$

and hot spot density distribution

$T_q(R_\perp - R_{\perp,i}) = \xi Q_s^2 e^{-(R_\perp - R_{\perp,i})^2/(2(\xi B_q)B_q)}$
CHARGED HADRON AND J/Ψ PRODUCTION

Use k_T-factorization for gluon production

$$\frac{dN_g(b_\perp)}{d^2p_g \, db_g} = \frac{\alpha_s}{(\sqrt{2})^6 C_F} \int \frac{\phi^p(x_p; k_\perp; R_\perp) \phi^A(x_A; p_g - k_\perp; R_\perp - b_\perp)}{k_{1\perp} R_\perp}$$

Unintegrated gluon distributions ϕ^p and ϕ^A (with $A = p, Pb$) from BK evolution with McLerran-Venugopalan initial conditions + spatial dependence

Hadronize using KKP fragmentation function

c\bar{c}-pair production in NRQCD

$$\frac{dN_{c\bar{c}}(b_\perp)}{d^2P_\perp \, dY} = \frac{\alpha_s}{(2\pi)^9 (N_c^2 - 1)} \int \frac{\mathcal{H}^\kappa(P_\perp - k_\perp, k_\perp)}{k_{1\perp}^2} \frac{\phi^p(x_p; k_\perp; R_\perp)}{k_{1\perp} R_\perp} \tilde{\mathcal{E}}^\kappa(x_A; P_\perp - k_\perp, k_\perp, k_\perp') R_\perp - b_\perp$$

for quantum state κ. The pair momentum is $P_\perp = p_\perp + q_\perp$, \mathcal{H}^κ are the hard factors, and the $\tilde{\mathcal{E}}^\kappa$ contain dipole amplitudes (related to ϕ^A)

$$\frac{dN_{J/Ψ}(b_\perp)}{d^2P_\perp \, dY} = \sum_{\kappa} \frac{dN_{c\bar{c}}(b_\perp)}{d^2P_\perp \, dY} \langle \mathcal{O}_\kappa^{J/Ψ} \rangle \text{ with non-perturbative long distance matrix elements } \langle \mathcal{O}_\kappa^{J/Ψ} \rangle$$

RESULTS: FLUCTUATIONS

Charged hadron multiplicity distribution

\[k_T\text{-fact. + KKP} \]
\[\text{CMS } N_{\text{track}} \]

\[p+\text{Pb} \text{ 5.02 TeV} \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_q)</td>
<td>3</td>
<td>(\alpha_s)</td>
<td>0.16</td>
</tr>
<tr>
<td>(B_{q_c})</td>
<td>3 GeV(^{-2})</td>
<td>(m_{\text{IR}})</td>
<td>0.2 GeV</td>
</tr>
<tr>
<td>(B_q)</td>
<td>1 GeV(^{-2})</td>
<td>(m_{J/\psi})</td>
<td>3.1 GeV</td>
</tr>
<tr>
<td>(\sigma_{B_q})</td>
<td>0.7</td>
<td>(m_c)</td>
<td>(m_{J/\psi}/2)</td>
</tr>
<tr>
<td>(\sigma_{Q_s^2})</td>
<td>0.1</td>
<td>(m_D)</td>
<td>1.87 GeV</td>
</tr>
<tr>
<td>(S_\perp)</td>
<td>13 mb</td>
<td>(\sigma_{B_q}) and (\sigma_{Q_s}): width parameters in log-normal fluctuations (\xi)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(m_{\text{IR}}): infrared regulator in the charged hadron calculation</td>
<td></td>
</tr>
</tbody>
</table>
Saturation drives the correlation between J/ψ and charged hadrons

\[dN_{ch}/d\eta = 4\langle dN_{ch}/d\eta \rangle \]
More normalization fluctuations (less size fluctuations) lead to stronger saturation effects on the J/ψ in the Pb-going direction.

- Mean p_T driven by mass and Q_s
- Q_s fluctuations and hot spot size matter

Experimental data: ALICE Collaboration, JHEP 09, 162 (2020)
$(\phi(x; k) \perp R) \rightarrow k^2 \perp C F^2 \alpha s \mathcal{S}_{\text{Adj}}(x; k \perp R) \perp R^\perp$
MODEL: CHARGED HADRON PRODUCTION

Use k_T-factorization for gluon production

\[
\frac{dN_g(b_\perp)}{d^2p_{g\perp}dy_g} = \frac{\alpha_s}{(\sqrt{2}\pi)^6} C_F p_{g\perp}^2 \int \phi^p(x_p; k_1; R) \phi^A(x_A; p_{g\perp} - k_1; R - b_\perp)
\]

Unintegrated gluon distributions ϕ^p and ϕ^A (with $A = p, Pb$) from Balitsky-Kovchegov evolution with McLerran-Venugopalan initial conditions

Modified to include spatial dependence with nucleon substructure. 3 hot spots locations sampled from

\[
P(R_{\perp,i}) = \frac{1}{2\pi B_{q{i}}} e^{-R_{\perp,i}^2/(2B_{q{i}})}
\]

and hot spot density distribution

\[
T_q(R_\perp - R_{\perp,i}) = \frac{\xi Q^2}{2(\xi B_q) B_q} e^{-(R_\perp - R_{\perp,i})^2/(2(\xi B_q) B_q)}
\]

B_q is given an x dependence motivated by JIMWLK evolution of proton size

Hadronize using KKP fragmentation function

\[
\frac{dN_{ch}(b_\perp)}{d\eta} = \int_{p_{\perp}}^1 \frac{dN_g(b_\perp)}{d^2p_{g\perp}dy_g} \left| \frac{dN_{ch}(b_\perp)}{d\eta} \right| p_{g\perp} = p_{\perp}/z
\]

MODEL: J/ψ PRODUCTION (NRQCD)

c¯c-pair production in NRQCD

Z.-B. Kang, Y.-Q. Ma, and R. Venugopalan, JHEP 01, 056 (2014)

\[
\frac{dN_{c\bar{c}}^\kappa(b_\perp)}{d^2P_\perp dY} = \frac{\alpha_s}{(2\pi)^9(N_c^2 - 1)} \int_{k_{1\perp},k_{1\perp}'} \mathcal{H}^\kappa(P_\perp - k_{1\perp}, k_{1\perp}, k_{1\perp}') \frac{\phi^p(x_p, k_{1\perp}, R_\perp)}{k_{1\perp}^2} \tilde{\Xi}^\kappa(x_A; P_\perp - k_{1\perp}, k_{1\perp}, k_{1\perp}' R_\perp - b_\perp)
\]

for quantum state \(\kappa\). The pair momentum is \(P_\perp = p_\perp + q_\perp\), \(\mathcal{H}^\kappa\) are the hard factors, and \(\tilde{\Xi}^\kappa\) the Wilson line correlators:

\[
\tilde{\Xi}^{[8]}(x; l_\perp, k_\perp, k_\perp'; R_\perp) = (2\pi)^2 \delta^{(2)}(k_\perp - k_\perp') \tilde{S}_F^A(x; k_\perp R_\perp) \tilde{S}_F^A(x; l_\perp - k_\perp; R_\perp) + \mathcal{O}(1/N_c) \quad \text{(octet)}
\]

\[
\tilde{\Xi}^{[1]}(x; l_\perp, k_\perp, k_\perp'; R_\perp) = \tilde{S}_F^A(x; k_\perp R_\perp) \tilde{S}_F^A(x; k_\perp' R_\perp) \tilde{S}_F^A(x; l_\perp - k_\perp - k_\perp'; R_\perp) + \mathcal{O}(1/N_c) \quad \text{(singlet)}
\]

\[
\frac{dN_{J/\psi}(b_\perp)}{d^2P_\perp dY} = \sum_\kappa \frac{dN_{c\bar{c}}^\kappa(b_\perp)}{d^2P_\perp dY} \langle \Theta_{J/\psi}^\kappa \rangle \quad \text{with non-perturbative long distance matrix elements } \langle \Theta_{J/\psi}^\kappa \rangle
\]

Again, spatial dependence in \(\phi^p\) and \(\tilde{S}_F^A\)
\(\bar{c} c \)-pair production in the Improved Color Evaporation Model (ICEM):

\[
\frac{dN_{\bar{c}c}(b_{\perp})}{d^2p_{\perp}d^2q_{\perp}dy_{c}dy_{\bar{c}}} = \frac{\alpha_s N_c^2}{2(2\pi)^{10}(N_c^2 - 1)} \int_{k_{\perp1};k_{\perp1};R_1} \phi^p(x_\chi,k_{\perp1};R_1) \tilde{\delta}_F^A(x_\chi;k_{\perp1};R_1 - b_1) \tilde{\delta}_F^A(x_\chi;p_{\perp} + q_{\perp} - k_{\perp1} - k_{\perp1};R_1 - b_1) \mathcal{H}(p_{\perp},q_{\perp},k_{\perp1},p_{\perp} + q_{\perp} - k_{\perp1} - k_{\perp1}) + \mathcal{O}(1/N_c)
\]

with the Wilson line correlator \(\tilde{\delta}_F^A \) in the fundamental representation (with \(A = p, Pb \))

Production of \(J/\psi \) is then given by

\[
\frac{dN_{J/\psi}(b_{\perp})}{d^2P_{\perp}dY} = F \int_{m_{J/\psi}^2}^{4m_{J/\psi}^2} dM^2 \frac{M^2}{m_{J/\psi}^2} \frac{dN_{\bar{c}c}(b_{\perp})}{dM^2d^2P_{\perp}dY}, \quad \text{where} \quad \frac{dN_{\bar{c}c}(b_{\perp})}{dM^2d^2P_{\perp}dY} = \int_{0}^{\sqrt{M^2 - m_c^2}} d\bar{q} \int_{0}^{2\pi} d\phi \mathcal{J} \frac{dN_{\bar{c}c}(b_{\perp})}{d^2P_{\perp}d^2q_{\perp}dy_{p}dy_{\bar{q}}}
\]

where \(\bar{q} \) and \(\phi \) are the relative transverse momentum and angle between the \(c \) and the \(\bar{c} \) in the rest frame of the pair.
NRQCD VS ICEM

\[\phi(x; k_\perp; R_\perp) = k_\perp^2 C_F^2 \alpha_s \mathcal{S}_{\text{Adj}}(x; k_\perp; R_\perp) \]

J/ψ SPECTRA AND R_{pPb}

Experimental data: ALICE Collaboration, JHEP 07 (2018) 160
Q_s VS. MULTIPLICITY

\[\varphi \left(\mathbf{x} ; \mathbf{k} \perp ; \mathbf{R} \perp \right) = k^2 \perp \mathcal{C}_F \perp \alpha_s \mathcal{S}_{\text{Adj}} \left(\mathbf{x} ; \mathbf{k} \perp ; \mathbf{R} \perp \right) \]