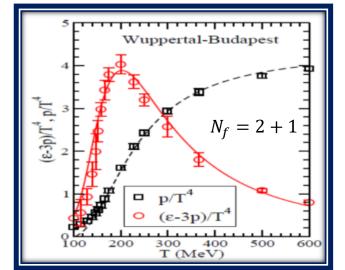

Open Charm and Bottom production in Heavy-Ion Collisions: R_{AA} and v_n - v_m correlations within event-shape selection

M.L.Sambataro^{1,2}, V.Minissale^{1,2}, S.Plumari^{1,2}and V.Greco^{1,2}

¹ Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy; ² INFN-Laboratori Nazionali del Sud, Catania, Italy

Quasi-Particle Model (QPM) fitting IQCD

Non perturbative dynamics \rightarrow M scattering matrices (q,g \rightarrow Q) evaluated by Quasi-Particle Model fit to **IQCD thermodynamics**

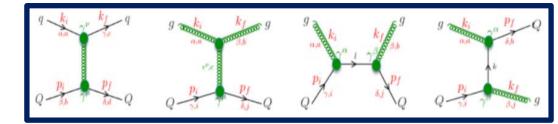

Thermal masses of gluons and light quarks

 $g^{2}(T) = \frac{48\pi^{2}}{(11N_{c} - 2N_{f})\ln\left[\lambda\left(\frac{T}{T_{c}} - \frac{T_{s}}{T_{c}}\right)\right]^{2}}$

 $\times (2\pi)^4 \delta^4 (p_1 + p_2 - p_1' - p_2')$

Larger than pQCD especially as $T \rightarrow T_c$

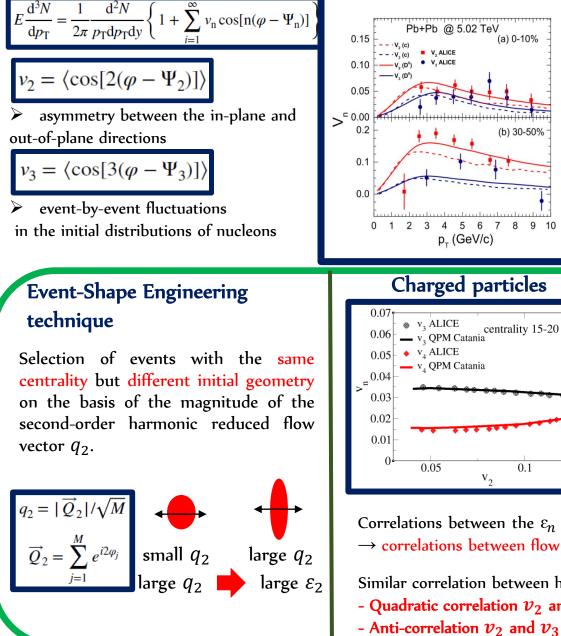
g(T) from a fit to ε from lQCD data \rightarrow good reproduction of P, ε -3P but **quark susceptibilities are understimated**!


S. Plumari et al, *Phys.Rev.D* 84 (2011) 094004 H. Berrehrah,, PHYSICAL REVIEW C **93**, 044914 (2016)

Relativistic Boltzmann equation at finite η/s

Bulk evolution $p^{\mu}\partial_{\mu}f_{q}(x,p)+m(x)\partial_{\mu}^{x}m(x)\partial_{p}^{\mu}f_{q}(x,p)=C[f_{q},f_{g}]$ $p^{\mu}\partial_{\mu}f_{g}(x,p)+m(x)\partial_{\mu}^{x}m(x)\partial_{p}^{\mu}f_{g}(x,p)=C[f_{q},f_{g}]$ Free-streaming field interaction Collision term $\varepsilon - 3p \neq 0 \qquad \text{gauged to some } \eta/s\neq 0$ HQ evolution $p^{\mu}\partial_{\mu}f_{Q}(x,p)=C[f_{q},f_{g},f_{Q}]$ $C[f_{q},f_{g},f_{Q}]=\frac{1}{2E_{1}}\int \frac{d^{3}p_{2}}{2E_{2}(2\pi)^{3}}\int \frac{d^{3}p_{1}}{2E_{1}'(2\pi)^{3}}$ $\times [f_{Q}(p_{1}')f_{q,g}(p_{2}')-f_{Q}(p_{1})f_{q,g}(p_{2})]$ $\times |M_{(q,g)\neq Q}(p_{1}p_{2}\neq p_{1}'p_{2}')|$

Equivalent to viscous hydro at $\eta/s \approx 0.1$


Feynmann diagrams at first order pQCD for HQs-bulk interaction:

Scattering matrices $M_{g,q}$ by QPM fit to lQCD thermodynamics

Predictions for D and B mesons: R_{AA} , v_n and their correlations within ESE technique

(a) 0-10%

 $r_{\perp}^{n}\cos[n(\varphi-\Phi_{n})]$ $r_{\perp}^{n} \sin(n\varphi)$ $\Phi_n = \frac{1}{n} \arctan$ $r_{\perp}^{n}\cos(n\varphi)$ (b) 30-50% $\varphi = \arctan(v/x)$ the more peripheral collision (30-50 % centrality class) \rightarrow larger v_2 and comparable v_3 v_2 mainly generated by the geometry of overlapping region in larger centrality collision 0 1 2 3 4 5 6 7 8 9 10 v_3 mainly driven by the fluctuation of the triangularity of overlap region at all centrality p_T (GeV/c) Charged particles Predictions for D mesons - v₃ QPM Catania centrality 15-20 % 30-50 % 0-10 % 0.03 Symmetric cumulant =0.02 ⁻ correlator SC(m,n) Pb - Pb 5.02 TeV 0.01 $SC(m,n) = \langle v_n^2 v_m^2 \rangle - \langle v_n^2 \rangle \langle v_m^2 \rangle$ $(x10^{-6})$ ■ (3,2) QPM Catania ♦ (3,2) QPM Catania 0.02 0.04 0.06 0.08 0.04 0.08 0.12 (4,2) QPM Catania 0.1 (4.2) OPM Catania v_2 (3,2) ALICE (4,2) ALICE SC(m,n) Correlations between the ε_n and ε_m present in the initial geometry \rightarrow correlations between flow harmonics different orders ⁻² Charged particles Similar correlation between hard and bulk particles. 10-30 30-50 0-10 - Quadratic correlation v_2 and v_4 centrality

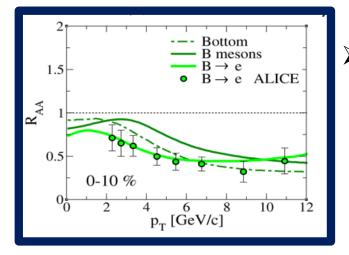
initial conditions of partons

We use **Monte Carlo Glauber Model** to simulate the

Data taken from: S. Mohapatra Nucl. Phys. A 956 (2016) 59-66

Predictions

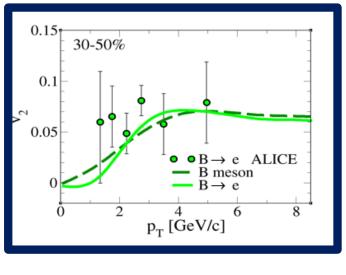
centrality


10-30

for D mesons

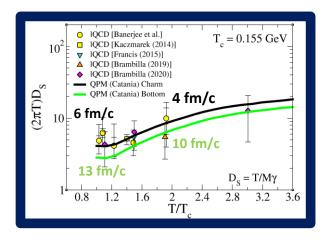
30-50 (%

Extension to BOTTOM Dynamics


Nuclear modification factor

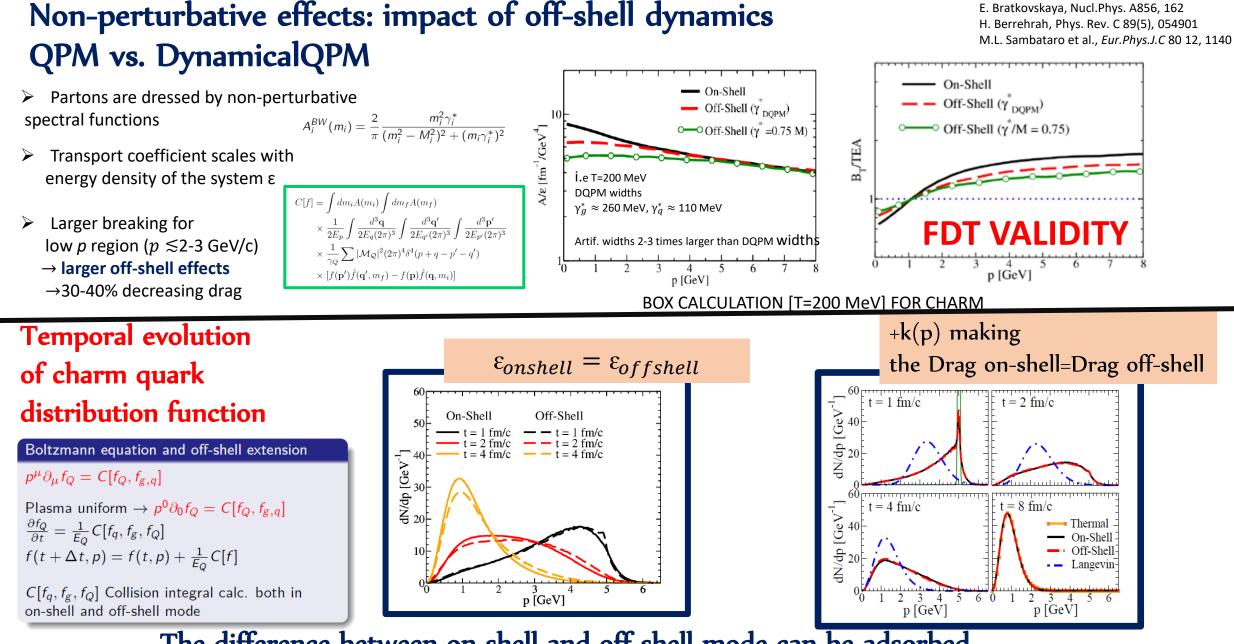
Both R_{AA} and v_2 indicate a **strong coupling for bottom quark with collectively expanding fireball**. We have a good agreement with the ALICE experimental data.

Prediction for B meson, electrons from semileptonic B meson decay within a coal + fragm model


Elliptic flow

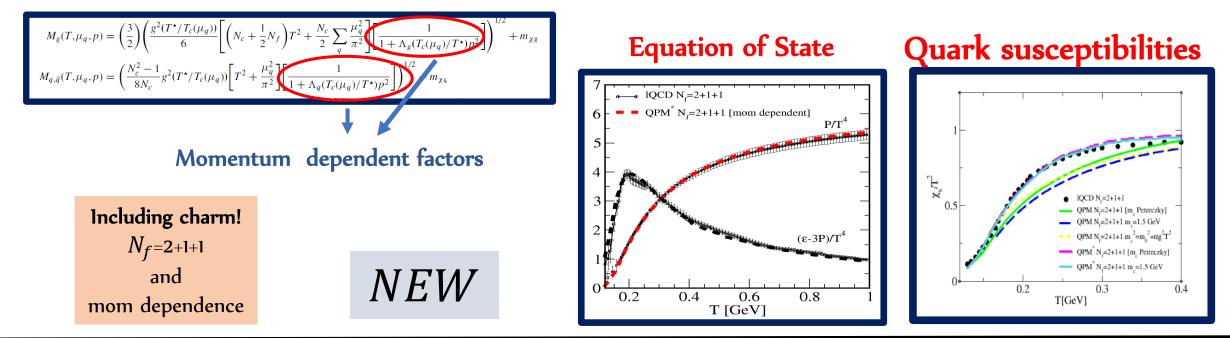
Data taken from Arnaldi HP(2020)

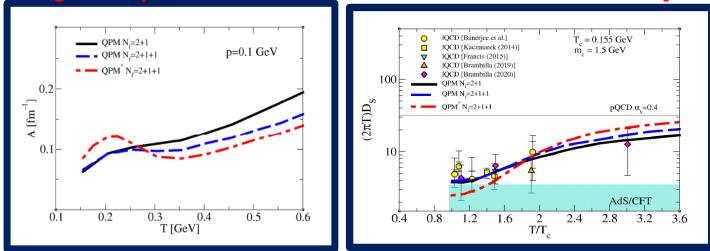
Spatial diffusion coefficient D_s


CHARM vs. BOTTOM

Kinetic theory: $\tau_{th}(b)/\tau_{th}(c) \approx M_b/M_c$

 $D_{S} = \frac{T}{M\gamma} = \frac{T}{M} \tau_{th}$ ideally M independent (M $\rightarrow \infty$)


In QPM approach $D_s(c)$ is 30-40% larger than $D_s(b)$ $M \rightarrow \infty$ limit is not reached for charm


For references: W. Cassing, Nucl. Phys. A831, 215

The difference between on-shell and off-shell mode can be adsorbed by multiplying scattering matrix for a *k* factor!

Standard QPM vs. momentum dependent QPM

Drag and spatial diffusion coefficient in the extended QPM

 $T/T_c < 2 \rightarrow$ strong non-perturbative behaviour near to T_c similar to the one achieved in strongly coupled theory as AdS/CFT.

high T region \rightarrow the D_s reaches the pQCD limit quickly than the standard QPM.