

CHARMONIUM ABUNDANCE AS A PROBE FOR REMNANTS OF CONFINEMENT

De Moura, P.H. and Torrieri, D.G.

-IFGW - UNICAMP

phmoura@ifi.unicamp.br and torrieri@unicamp.br

Using a simple analytically solvable model, we argue that it makes charmonium abundance the ideal probe of remnants of confinement, expected to be present at arbitrary high temperature [1,2] but thermodynamically irrelevant, since the nearest neighbor thermal scale 1/T is parametrically smaller than the confinement scale.

[1] D. Zwanziger, Phys. Rev. D 69, 016002 (2004)

[2] G. S. Bali, J. Fingberg, U. M. Heller, F. Karsch, and K. Schilling, Phys. Rev. Lett. 71, 3059 (1993)

J/Ψ DYNAMICS IN A QUARK-GLUON PLASMA

The rate equations for J/ψ abundance are given by the following equations [3]:

$$\frac{\mathrm{d}N_{J/\psi}}{\mathrm{d}\tau} = -\Gamma(T)N_{J/\psi} + \alpha(T)\frac{N_{c\bar{c}}^2}{V} = -\frac{\mathrm{d}N_{c\bar{c}}}{\mathrm{d}\tau}$$

with

$$\Gamma \sim \lambda_D T$$
 and $\alpha \sim \lambda_R \frac{1}{T^2}$.

 λ_D and λ_R are dimensionless parameters (dissociation and recombination). $\sigma_{ff o J/\psi X} << \sigma_{ff o cc X}$, $N_{J/\psi} << N_{c\bar{c}}$ and the dependence on regeneration on $N_{c\bar{c}}^2$, the regeneration term will soon take over, leading to an enhancement of $N_{J/\psi}$.

REMNANTS OF CONFINEMENT

Let us now implement the assumption that charm quarks cannot move beyond a volume of $V_{
m c}=R_{
m c}^3.$

- ullet One has a "locally" quasi-free gas, however, all clusters of volume $V_{
 m c}$ are color neutral.
- Solving in each bin of transverse area and summing together will give the final $N_{J/\psi}$, and it will generally be much smaller than if c and \bar{c} are allowed to move around freely.

De Moura, P.H. and Torrieri, D.G. IFGW - UNICAMP

PRELIMINARY RESULTS

- Calculate $R_{\rm AA}$ as a function of R_c .
- \bullet Look for the J/ψ data.