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Quarkonia dissociation/recombination rates [1]: Heavy quark momentum diffusion coefficient [2]:
The following are the gauge-invariant correlators that determine (in the limit ):R1 → R2

t

R

Ei1(R1, t1)

Ei2(R2, t2)

(R1, +∞) (R2, +∞)

(R2, −∞)(R1, −∞)

[1] X. Yao and T. Mehen, “Quarkonium Semiclassical Transport in Quark-Gluon Plasma: Factorization and Quantum Correction,” JHEP 02 (2021) 062 [2] J. Casalderrey-Solana and D. Teaney, “Heavy quark diffusion in strongly coupled N=4 Yang-Mills,” Phys. Rev. D 74 (2006) 085012

⟨Ea
i2𝒲

abEb
i1⟩T ⟨Trcolor[UEi2UEi1U]⟩T



Perturbative calculations of each correlator
Calculations for each correlator have been carried out at finite temperature up to 1-loop 
level in  covariant gauges. In terms of their respective (HTL-unresummed) spectral 
functions, they are:

• For Quarkonia [3]:

• For Heavy Quarks [4]:

with the same temperature-dependent function .

At this order in perturbation theory, they differ by . This verifies that
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The holographic counterparts in strongly coupled  SYM𝒩 = 4
Both correlators may be formulated in the AdS/CFT language: ⟨W[𝒞 = ∂Σ]⟩T = eiSNG[Σ]
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This can be evaluated by taking path variations in the following Wilson loop ,𝒞f

Δt = t2 − t1

L

The correlator of interest is 
recovered by taking .L → 0
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This was evaluated by solving the classical equations 
of motion from the Nambu-Goto action for the 
fluctuations  sourced by  and evaluating the 
response at  with in-falling boundary conditions at 
the right black hole horizon.
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Two-sided AdS Black Hole

The well-known heavy quark diffusion coefficient follows from 
here by integrating over , obtaining: t2 − t1 κ = π λT3



Evaluation of the quarkonia correlator using AdS/CFT
Our evaluation of the quarkonia correlator using AdS/CFT is in progress. We are currently 
working through the following steps (in Euclidean signature), using the Chebyshev spectral 
method [5]:

1) Solve for the background worldsheet solution: 2) Solve for the fluctuations with a source as a 
boundary condition:

3) Extrapolate in the limit :L → 0
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Summary and conclusions
•The electric field correlators that are relevant for quarkonia 

recombination/dissociation are different to those that are 
relevant for single heavy quarks.

•They have been demonstrated to be different in perturbation 
theory, with each calculation being gauge-invariant.

•The heavy quark correlator in a thermal medium has been 
evaluated in strongly coupled  SYM. However, the quarkonia 
correlator was only recently formulated in its current form [1], 
and an AdS/CFT calculation of it is currently underway.

•Goal of this work: determine the degree to which the two 
correlators differ at strong coupling at finite temperature.
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