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Fluidlike behavior observed in small systems

Hydrodynamic
descriptions work for
small collisional systems
with low final state
particle numbers

→ How many particles
are necessary for fluidlike
behavior?

Monte Carlo Glauber model and hydrodynamic evolution of small
systems; from: PHENIX collaboration, Nature Physics, 2019 [1]
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The observable: v2/ε2

anisotropy in

the spatial distribution: ε2 =
〈y2−x2〉
〈y2+x2〉

the momentum distribution: v2 =
〈
p2
x−p2

y

p2
x+p2

y

〉
indicator for fluidlike behavior: elliptic flow normalized by initial
conditions v2/ε2

v2/ε2 as a function of the multiplicity, ε2 obtained
using initial conditions from a Glauber model; from:
Drescher et al., PRC, 2007 [2]

v2/ε2 as a function of opacity γ̂, supplemented with
kinetic theory calculation with non-ideal equation of
state; from: Kurkela, Wiedemann, Wu, EPJ C, 2019 [3]
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Analogy to cold atomic systems

Investigate a small number N of atoms in a
trap. The geometry of the trap determines
ε2. Release the trap and make a time of
flight measurement to obtain v2.

Advantages:
I control over geometry of the trap and

thus the initial density profile

→ due to known orientation we can use
one-particle distributions instead of
two-particle correlations

I control over interaction strength via
Feshbach resonance

I control over particle number
False-color absorption images of
a strongly interacting,
degenerate Fermi gas; from:
O’Hara et al., Science, 2002 [4]
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Proposed experiments

Setup: N atoms in an
anisotropic harmonic
trap with frequencies
ωx , ωy ; switch off
trap instantaneously
and make a time of
flight measurement of
angular particle
distribution at late
times; repeat for
different values of N.
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∝ 1 + 2 v2 cos(2 ϕ)

ϕ
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x
ε2 = (1 - λ) / (1 + λ)

v2 = 〈cos(2 ϕ)〉t=∞

interacting Fermi gas (λ = ωy /ωx)

ε2=0

ε2=0.1

ε2=0.2

ε2=0.4

fixed Natoms

Large figure: sketch of an angular particle distribution as would be
measured; subfigure: sketch of the trapped fermi gas with the definitions of
ε2 and v2; from Floerchinger et al., 2022 [5]

Evaluation: For the normalization we take ε2 as its ground state
value ε2 = (1− ωy/ωx)/(1 + ωy/ωx), entirely determined by the
trap geometry. The elliptic flow can be obtained from the
asymptotic angular distribution as v2 = 〈cos(2φp)〉.
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Non-flow / purely QM effects
In high-energy collisions: Non-flow effects (e.g. resonance decays)
can influence the two-particle correlations used to calculate v2
(more important for small systems / multiplicities).”

In cold atomic
systems: effects from
quantum mechanics
become relevant at
low particle numbers
and temperatures

∆xi ·∆pi ≥ 1/2
stronger confinement
in one direction →
larger momentum in
that direction
(without interaction)
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△ ε2 = 0.4

ε2 = 0.8

ε2 = 0.1

non-interacting Fermi gas

Natoms → ∞, kF  ≫ 1, ε2 ≈ 1
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v2/ε2 for different numbers of non-interacting particles in a 2d harmonic
trap; dots, triangles, squares: numerical results; solid lines: estimated fits,
each proportional to 1/N; dashed line: estimate of hydrodynamic limit;
from Floerchinger et al., 2022 [5]

The effect of this becomes smaller with increasing particle number
and temperature.
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Expectations
We hope to find interplay between all these effects depending on
the particle number and the convergence towards a fluiddynamic
limit at high particle numbers and strong interactions (and high
temperatures).
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v2
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100

?
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Sketch of the estimated scaling of the quantum effect (green solid line), classical interaction effects (red solid line)
and the hydrodynamic limit (blue dashed line); the question mark at the crossing of the two solid lines marks the
mesoscopic scale; from Floerchinger et al., 2022 [5]
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Outlook

Theoretical side: multiparticle correlations, possible analogies to
hydrodynamization

Experiments are in progress

Photograph of the experimental setup of the Ultracold Quantum Gases group, Physikalisches Institut, Heidelberg
University; from: http://ultracold.physi.uni-heidelberg.de/
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