Precision hydrodynamic predictions for particle production in isobar collisions at RHIC

By Andreas Kirchner

Giacalone G., Grossi E., Floerchinger S., Capellino F.
FluiduM overview

Describe event ensemble instead of single event
→ symmetric background
→ BG-fluctuation splitting

\[\Phi(\tau, r, \varphi, \eta) = \Phi_0(\tau, r) + \epsilon \Phi_1(\tau, r, \varphi, \eta) \]

1+1D BG equations of motion for second order relativistic Israel-Stewart hydrodynamics

- Background expansion gives average quantities (yields and \(<p_T>\))
- Able to reproduce multiplicities from ALICE measurements

Particlization+Resonance decays:
Cooper-Frye with FastReso (1809.11049)
Isobar collisions @RHIC

Isobar Zr+Zr and Ru+Ru collisions @200GeV
→ Original goal: find signatures of electromagnetic field (e.g. Chiral magnetic effect)
→ High precision data (4B collisions for each system)
→ Signatures of EM-field investigated in ratios of observables (departures from unity)

Expectation: same multiplicity
Experimental data: Percent level deviations from unity

WHY?

STAR Collaboration (2109.00131)
Origin of the differences: nuclear structure

Main diff.: number of protons/neutrons
→ bigger neutron skin in Zr
→ different nuclear geometry

Woods-Saxon parametrization:

\[
\rho(r, \theta, \phi) \propto \frac{1}{1 + e^{[r - R_0 (1 + \beta_2 Y_2^0 (\theta, \phi) + \beta_3 Y_3^0 (\theta, \phi))]/a_0}}
\]

Half-width radius Nuclear deformations Diffusivity

Diffusivity related to neutron skin thickness

Multiplicity ratio dominated by neutron skin (2111.14812, 2111.15559, 2112.13771, 1808.06711, 2103.05595)

But only transport/initial state/limited hydro calculations
→ FluiduM
Setup

- Run TrenTo for initial state
- Define 0.5% centrality bins using 50M minimum bias events
- Run 400k events in select bins (→ effectively 80M events)
- Scan large range of nuclear (R, a, β_2, β_3), collision (k→multiplicity fluctuation, p→energy deposition, w→nucleon size, d→nucleon repulsive core, m→number of partons, v→parton size) and QGP ($\eta/s, \zeta/s, T_{fo}, \tau_0$) parameters

Histogram multiplicity through linear rescaling of TrenTo entropy
Initial State Results

Histogram multiplicity ratio dominated by diffusivity

Default: $p=0$, $w=0.5$ fm, $k=1$
Final state results

QGP parameters
Final state results

Multiplicity ratio dependent on “degree of sharpness” of QGP

Default: $p=0$, $w=0.5$ fm, $k=1$

Multiplicity ratio dominated by diffusivity
Outlook

Extend scan to more observables (mean pT & flow coefficients)

Include more physics in hadronic phase (e.g. PCE)

Improve BG-fluct splitting with Hatree-Fock

\[
\partial_r \psi^a + B_b^a \partial_r \psi^b - S^a + \frac{1}{2} \left[\frac{\partial^2 B_b^a}{\partial \psi^c \partial \psi^d} \partial_r \psi^b - \frac{\partial^2 S^a}{\partial \psi^c \partial \psi^d} \right] C^{cd}(x, x')
\]

\[
+ \left[\frac{\partial B_b^a}{\partial \psi^c} \partial_r + \frac{\partial C_b^a}{\partial \psi^c} \partial_\varphi + \frac{\partial D_b^a}{\partial \psi^c} \partial_\eta \right] C^{bc}(x, x') \bigg|_{x' = x} = \delta(\tau - \tau_{in}) \psi^a_{in}(r)
\]