A HEAVY-ION COLLISION EVENT

Pythia8/ANGANTYR (Default) → Glauber model → Pythia8/ANGANTYR (New)

N - CR in every sub-collision → String Fragmentation + Hadronization for every sub-collision → All hadrons from all sub-collisions are combined

N- pp like sub-collisions → A heavy-ion event is simulated

All partons from all sub-collisions are combined → Spatially constrained CR performed in whole event → String Fragmentation + Hadronization
MPI based Colour reconnection, used in Pythia8/Angantyr (Default)

QCD Colour reconnection is extended with spatial constraints, used in Pythia8/Angantyr (New)

Apart from the existing constraints, the colour dipoles are spatially constrained, meaning, dipoles separated farther than the allowed range will not be colour reconnected.
pp collisions

- New changes with re-tuning are able to reproduce Pythia8 (Default) distributions
- New changes enhance baryon production due to junction topology in QCD CR
pPb collisions

Events are generated using the same parameters used as in *pp* collisions.

- Approx. 10% suppression in multiplicities in the **0-10%** centralities is observed, because of A) **loss** of high multiplicity events, due to technical reasons in the string fragmentation model, B) **enhanced CR** among the colour dipoles from all the sub-collisions.

In addition to *pp* tunes, secondary non-diffractive events are modified (they are introduced in the Angantyr model at the *pA* level).

Secondary non-diffractive (Figure 3)
An MC model challenging the assumption of a QGP formation in HI events. *HI = Heavy-ion*
A HI event is treated inclusively by merging sub-collisions at the parton level, instead of a collection of many pp like collisions as in Angantyr (Default)
The model is re-tuned in pp collisions, the parameters introduced in pA collisions are re-tuned in pA collisions, **No tuning** at AA collisions

OPPORTUNITY
A model with a new method of sub-collisions handling is ready to be tested against HI collision experiments observables

LIMITATIONS
In pA and AA type collisions, high multiplicity events are more often aborted compared to low multiplicity events, which introduces a bias in simulation
- Angantyr (Default) Pb-Pb @ 2.76 TeV ~ 0.59 s/event
- Angantyr (New) Pb-Pb @ 2.76 TeV ~ 272 s/event
- Angantyr (Default) Xe-Xe @ 5.44 TeV ~ 0.44 s/event
- Angantyr (New) Xe-Xe @ 5.44 TeV ~ 159 s/event

OUTLOOK
Work in progress to reduce the bias in HI events simulation, and the event simulation time