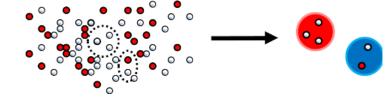


A Systematic Study of In-Medium Hadronization of Jet Showers with JETSCAPE and Hybrid Hadronization

Arjun Sengupta

Texas A&M University

On behalf of the JETSCAPE Collaboration


April 6, 2022

Hybrid Hadronization (HH)¹ Model

^I K.C. Han et. al., Phys. Rev. C 93 (2016) 4, 045207

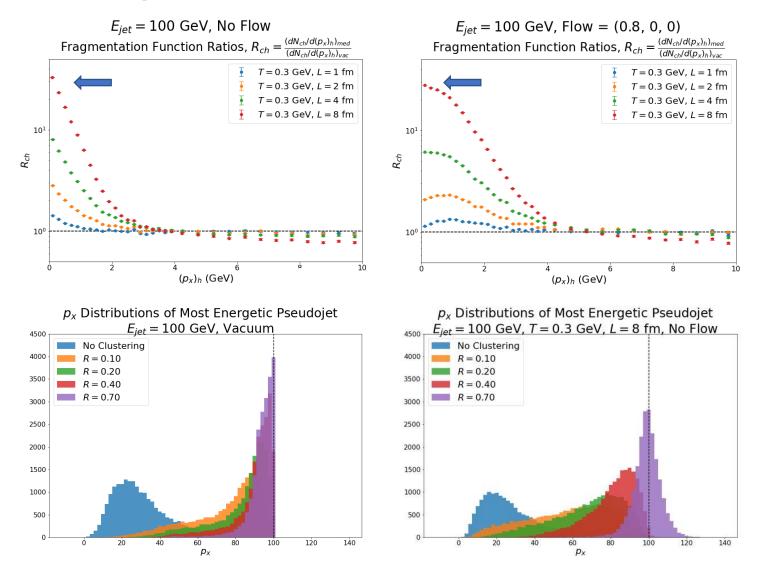
Combines two phenomenological models of hadronization:

- 1. String fragmentation (low-density systems):
 - Color flux tubes in QCD vacuum at large distances \rightarrow string-like behavior.
 - Quarks connected with strings; gluons are part of these strings these strings are then broken to form hadrons.
- 2. Recombination (high-density systems):
 - Quarks can directly recombine into hadrons
 - Successful phenomenology in heavy-ion collisions

GOAL: Systematically study hadronization of jets in a QGP medium

- 1. Baryon/meson ratios
- 2. Elliptic flow scaling

JETSCAPE^{1,2,3} Setup for HH Studies

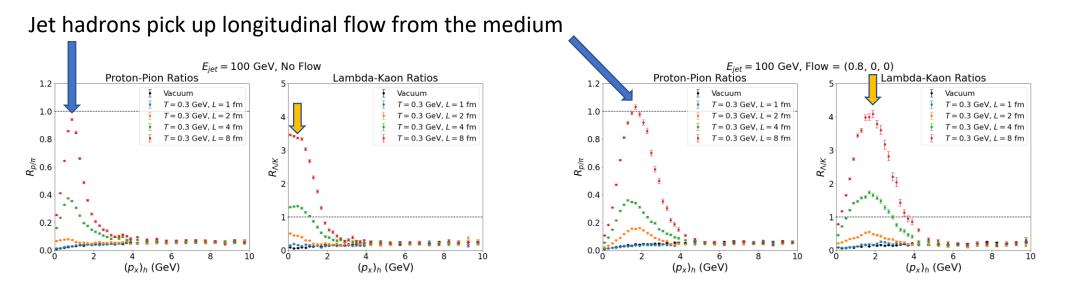

¹ J.H. Putschke et. al., arXiv:1903.07706, ² A. Kumar et. al., Phys. Rev. C 102, 054906 (2020), ³ A. Kumar et. al., arXiv:2204.01163

Run 3 modules in a QGP brick medium:

- **1.** MATTER propagates and splits an initial jet parton (in the x-direction), rapidly dropping its virtuality until it falls below a threshold Q_0 (= 1.2 GeV)
- 2. LBT propagates low-virtuality and real partons through the QGP
- **3.** Hybrid Hadronization hadronizes partons through recombination and string fragmentation:

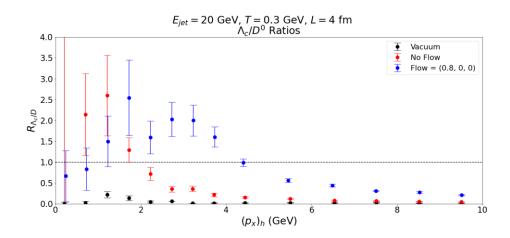
Input	Shower (MATTER, LBT) & thermal partons (sampled QGP brick) –
	momentum, position, color information
Recombination	Sample probabilities for random quark pairs and triplets to recombine into
	hadrons, using color flow information from a shower Monte Carlo
String Prep	Prepare remnant partons on a string-by-string basis for PYTHIA –
	constructing a fake history for junction containing strings
String Fragmentation	Call PYTHIA to perform string fragmentation on remnant strings and handle
	hadron resonances
Output	Recombined and fragmented hadrons, including space-time information

Longitudinal Flow Effects


Charged hadron production **grows with medium size**, as expected with recombination

Flow effects visible as **shoulders** in inmedium fragmentation functions

Most energetic event-by-event pseudojets, clustered using the anti-kT algorithm


R=0.7 jets tend to (on average) capture the original jet energy

Longitudinal Flow Effects



Baryon/Meson enhancement grows with medium size, as expected with recombination

B/M ratios are also enhanced in the **charm sector** (c-quark jets), and charmed hadrons can pick up medium flow.

Transverse Flow Effects

Soft jet partons are likely to coalesce with thermal partons during hadronization

→ Hadronization in a medium with transverse flow induces flow for **soft** jet hadrons

... whereas **hard** jet partons are unlikely to coalesce with thermal partons, and don't pick up the flow