Cluster and hyper-cluster production in HICs with PHQMD

S. Gläßel, J. Aichelin, E. Bratkovskaya, V. Kireyeu, V. Voronyuk, C. Blume, G. Coci, V. Kolesnikov, M. Winn

Motivation
Exploring the QCD-phase-diagram with clusters as experimental observables.
Understanding the production of clusters in relativistic heavy-ion collisions:
How can weakly bound clusters survive in the hot and dense environment of a HICs?

Challenge
Modeling the time evolution of cluster formation and the origin of their production.
PHQMD: dynamical evolution of HIC & cluster formation

PHQMD: J. Aichelin et al., PRC 101 (2020) 044905 & S. Gläßel et al., PRC 105, (2022) 014908

<table>
<thead>
<tr>
<th>PHSD</th>
<th>+</th>
<th>QMD</th>
<th>+</th>
<th>MST</th>
</tr>
</thead>
</table>
| Interactions of hadrons
Propagation of mesons
QGP-phase | Propagation of baryons | Cluster identification |

Relativistic considerations

off-shell generalized transport equations based on *Kadanoff-Baym* equations

Dynamical Quasi Particle Model
quark / gluon spectral function $\rho_q(p, \omega)$:

mean-field potentials

Correlations between baryons

n-body transport approach

propagation of Gaussian wave functions ψ_i

QMD wave function for N particles $\psi_N = \prod_{i=1}^{N} \psi_i$

Skyrme potential

$$\langle V_{Skyrme}(\mathbf{r}_i, t) \rangle = \alpha \left(\frac{\rho_{int}(\mathbf{r}_i, t)}{\rho_0} \right) + \beta \left(\frac{\rho_{int}(\mathbf{r}_1, t)}{\rho_0} \right)$$

interaction density $\rho_{int}(\mathbf{r}_i, t)$

\Rightarrow formation of clusters due to potential interactions

Minimum Spanning Tree

1. Two baryons are bound if $|r_i - r_j| < 4.0$ fm
2. Baryon is bound to cluster if bound with at least one baryon of cluster
PHQMD-simulations and experimental data (AGS & SPS)

E864 data: Au-Pb 0-10 % 10.6 AGeV

NA49 data: Pb-Pb 0-10 % 40 AGeV

B2 = \left(\frac{E d^3N_{d}}{E_p \frac{d^3N_{pp}}{dp_T^3} |p_T=P_d/2} \right)^2

=> Experimental rapidity- & p_{T}-distributions for light nuclei are reproduced at E_{lab} = 10.6 AGeV & 40 AGeV.

=> Probability that baryons with p_{T}/A form a cluster with size A almost independent of p_{T} (only slight increase).

PHQMD-simulations and experimental data (RHIC)

STAR data: Au-Au 7.7–200 GeV 0-10 % - light nuclei

=> p_T-distributions for deuterons are reproduced for $\sqrt{s} = 7.7 - 200$ GeV.

STAR data: Au-Au 3 GeV 0-10 % - hypernuclei

=> Trend of experimental STAR* $^3\Lambda$H & $^4\Lambda$H p_T-spectra is well produced.

=> Yields are slightly overpredicted.

=> Simple hyperon-nucleon interaction in PHQMD ($= 2/3$ of the nucleon-nucleon interaction)

When & where are clusters formed?

freeze-out time of baryon (last collision)

formation time of stable clusters

transverse distance to fireball center

$P(t)$

$P(A)$

dN/dr_T

\Rightarrow Collisions of baryons essentially over after $t = 40 \text{ fm}/c$

\Rightarrow Clusters formed shortly after collisions have ceased

\Rightarrow Clusters formed behind the front of expanding energetic hadrons

Since the ‘fire’ is not at the same place as the ‘ice’, clusters can survive.