From hydro to jet quenching, coalescence and hadron cascade

A coupled approach to solving the $R_{AA} \otimes v_2$ puzzle

Wenbin Zhao (zhaowenb@pku.edu.cn)
Wayne State University, Central China Normal University

QM 2022

R_{AA} v.s. $v_2(p_T)$ from low p_T to high p_T

- CoLBT-hydro with Hydro-Coal-Frag hadronizations can simultaneously describe the R_{AA} and collective flow from low p_T to high p_T regions in Pb+Pb collisions.

Transverse momentum spectra of identified hadrons

![Graph showing transverse momentum spectra](image)

- CoLBT-hydro nicely describes the spectra of identified hadrons, P/π and K/π from 0 to 20 GeV.
- P/π in Pb+Pb is higher than pp; P/π peak moves to higher p_T in central collision.
- P/π and K/π approach to the p-p value at high p_T.

R_{AA} and $v_2 (p_T)$ at Au-Au at RHIC

- With parameters fixed at LHC, CoLBT-hydro nicely predicts the R_{AA} and $v_2 (p_T)$ from 0 to 20 GeV in Au-Au at 200 GeV.

- CoLBT-hydro nicely predicts the $v_2 (p_T)$ of π, K and P from 0 to 6 GeV in RHIC.

Collective flow of identified hadrons

- CoLBT-hydro with Hydro-Coal-Frag works well for PID flow from 0 to 8 GeV.
- Quark coalescence is important for Pb+Pb collisions at intermediate p_T range.
- NCQ scaling at intermediate p_T are caused by interplay of hydro, coal. and frag.

Summary

• CoLBT-hydro with Hydro-Coal-Frag hadronization simultaneously describe the R_{AA} and collective flow from low p_T to high p_T in Pb+Pb collisions.

• CoLBT-hydro also nicely describes the collective flow of identified hadrons with p_T from 0 to 8 GeV.

• Quark coalescence is important in heavy-ion collisions.

• With parameters fixed at LHC, CoLBT-hydro excellently predicts the R_{AA} and collective flow from low p_T to high p_T in Au+Au collisions at RHIC.

Coalescence-Fragmentation hadronization code is available here: https://github.com/wenbin150110084/Coalescence_Fragmentation_code

Thanks for Your Attention
Back Up
Framework of calculations

Hydro-Coal-Frag hadronization

Thermal hadrons, low p_T (CLVis):
- generated by hydro. with Cooper-Frye.
 - Meson: $p_T < 2p_{T1}$; baryon: $p_T < 3p_{T1}$.

- initial shower partons from pythia8 with $p_T > p_{T2}$

Coalescence hadrons (Coal Model):
- generated by coalescence model including thermal-thermal, thermal-hard & hard-hard coalesence.

Fragmentation hadrons:
- the remnant hard quarks feed to fragmentation.

UrQMD afterburner:
- All hadrons are feed into UrQMD for hadronic evolution, scatterings and decays.

Transition from low p_T to high p_T

- CoLBT-hydro nicely describes the spectra of charged from 0 to 20 GeV.
- Transition p_T is higher in central collisions.

• With parameters fixed at LHC, CoLBT-hydro nicely predicts the spectra of π^0 and of π^\pm, K and P from low p_T to high p_T in Au-Au at 200 GeV.

NCQ scaling at RHIC and LHC

- NCQ scaling at intermediate p_T are caused by interplay of hydro, coal. and frag.
