KAON FLOW IN AU+AU COLLISIONS AT 1.23AGEV MEASURED WITH

LUKÁŠ CHLAD^{1,2} FOR THE HADES COLLABORATION QUARK MATTER 2022 – POSTER SESSION 2 T I 4_I

¹ Nuclear Physics Institute of the CAS, Řež ² Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

Work supported by: MEYS CZ - LM2015049 and LM2018112 grant FAIR-CZ-OP grant CZ.02.1.01/0.0/0.0/16_013/0001677 GACR GA13-06759S LTT17003 KINEO II. CZ. 02.2.69/0.0/0.0/18_053/0017163

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

WHY IS IT INTERESTING TO STUDY KAON FLOW?

	$\sqrt{S_{NN}}$	Data sample [events]
Au + Au	2.42	7 ×10 ⁹
Ag + Ag	2.55	14 ×10 ⁹

Production threshold NN \rightarrow YKN: $\sqrt{S_{NN}} = 2.56 \text{ GeV}$

AuAu – presented here AgAg – analysis to be done

- Kaon propagation and production in medium is affected by KN potential
- Kaon flow is important test for microscopic models
- Scares data worldwide (KaoS, FOPI, START Fix Target) no close threshold differential results

HADES AND FLOW MEASUREMENT

- Fixed segmented target (interaction prob. 2%)
- START & VETO detectors (trigger & time measurement)
- MDC & magnet (tracking & hadron id. via dE/dx)
- TOF & RPC (trigger & centrality determination & hadron id. via β(p))
- Forward Wall (event plane (EP) determination)
- DAQ (read-out with 10kHz for HIC and 50kHz for pp)

KAON IDENTIFICATION

- Decay to $\pi^+\pi^-$
- TMVA for TC optimization
- Mixed-event for residual bckg subtraction

- Track quality selection
- dE/dx in MDC & TOF
- Fit for bckg subtraction

KAON FLOW RESULTS FROM AU+AU $\sqrt{S_{NN}} = 2.42 \text{ GeV}$ (PUBLICATION IN THE PREPARATION)

Main findings:

•

- K^+ and K^0 , behave identically (both contain s-bar)
- K^+ and K^- show similar trends (despite the opposite sign of (anti-)KN potential)

Significant p_T dependence of v_1 and v_2 => necessity of differential approach for flow analysis (never done at sub-threshold energy)

COMPARISON WITH MICROSCOPIC MODEL PREDICTIONS

(PUBLICATION IN THE PREPARATION)

