Modification of jet fragmentation

We know jets experience “energy loss” — but what is their fragmentation pattern?

Jet substructure:
- Calculable in pQCD — no fragmentation functions needed
- Corrected for background and detector effects — direct comparison to theory

\[\theta_i = \frac{\sqrt{\Delta y^2 + \Delta \varphi^2}}{R} \]
\[z_i = \frac{p_{T,i}}{p_{T,jet}} \]

How can we relate this to theoretically calculable quantities?
What do we know about z and θ?

Momentum

Longitudinal momentum of hadrons in jets is softened: $D(z)$

- ATLAS PRL 123 (2019) 042001
- CMS PRC 90 (2014) 2, 024908

Little-to-no modification in jet core: z_g

- ALICE PRL 128 (2022) 10, 102001

Angle

Jet core is narrowed: θ_g

ALICE PRL 128 (2022) 10, 102001

See talk by H. Bossi Thursday 18:10

\[
\theta_g = \frac{\sqrt{\Delta y^2 + \Delta \phi^2}}{R}
\]

But there are key open questions:
- Girth/mass puzzle
- Large-z behavior

This talk
The girth-mass puzzle

Jet angularities

\[\lambda_{\alpha} \equiv \sum_{i \in \text{jet}} z_i \theta_i^{\alpha} \]
\[z_i \equiv \frac{p_{T,i}}{p_{T,\text{jet}}} \]
\[\theta_i \equiv \frac{\Delta R_{i,\text{jet}}}{R} \]

Parameter \(\alpha > 0 \) varies
weight of collinear radiation
Jet angularities

$$\lambda_\alpha \equiv \sum_{i \in \text{jet}} z_i \theta_i^\alpha$$

$$z_i \equiv \frac{p_{T,i}}{p_{T,\text{jet}}}$$

$$\theta_i \equiv \frac{\Delta R_{i,\text{jet}}}{R}$$

Note: $$\lambda_2 = \left(\frac{m}{p_T} \right)^2 + \mathcal{O} \left(\lambda_2^2 \right)$$

Why is the girth modified, but the mass not significantly modified?
Perform systematic measurement to map the girth-mass transition:

- Generalize observable:
\[g, m \rightarrow \lambda_\alpha \equiv \sum_{i \in \text{jet}} z_i \theta_i^\alpha \text{ for } \alpha = 1, 1.5, 2, \ldots \]
- Groomed vs. ungroomed
- Multiple \(R \)

pp baseline is described by pQCD in perturbative regime — with expected breakdown in nonperturbative regime

Jet angularities — pp

Fig. 5: Measurements of the jet angularities in pp collisions at \(\sqrt{s} = 5.02 \) TeV for \(\alpha = 1, 1.5, 2, \ldots \). Comparison of ungroomed jet angularities with pQCD calculations.

Small \(\lambda_\alpha \): Non-perturbative

Larger \(\lambda_\alpha \): Good agreement with pQCD calculations

Kang, Lee, Ringer JHEP 04 (2018) 110
Apply grooming procedure to remove low-energy, wide-angle radiation

\[\lambda_{\alpha,g} \equiv \sum_{i \in \text{groomed jet}} z_i \theta_i^\alpha \]

Jet grooming recovers larger region of successful perturbative description

See also: CMS arXiv 2109.03340
Ungroomed jet angularities

Little-to-no modification observed
Jet angularities — Pb-Pb

Ungroomed jet angularities

Little-to-no modification observed

Measured pp baseline results in smaller modification than with PYTHIA reference

Less modification than in $\sqrt{s_{NN}} = 2.76$ TeV measurement based on PYTHIA reference

ALICE JHEP 10 (2018) 139
Jet angularities — Pb-Pb

Groomed angularities are modified more strongly than ungroomed angularities

Could be due to counterbalancing effects:
1. Suppression of wide jets
2. In-jet broadening

Jet grooming reduces (2), leaving stronger collimation effects visible

Significant modification, strong ordering in α
Jet angularities — theory comparisons

Models generally describe trends in data well, although some deviations

- **JEWEL**
 Zapp, EPJ C 74 2 (2014)

- **JETSCAPE**
 arXiv 2204.01163

- **Higher Twist**
 Chen, Zhang et al., CPC 45 (2021) 2, 024102

- **Hybrid Model**
 See Zach Hulcher, Tues 18:30

Additional α, p_T available:
https://alice-figure.web.cern.ch/node/21570

Additional available:
https://alice-figure.web.cern.ch/node/21570/uni03B1

Ungroomed

- ALICE 0-10% Pb-Pb data
- ALICE Preliminary
 $\sqrt{s_{NN}} = 5.02$ TeV
 Ch.-particle anti-k_T jets
 $40 < p_T^{jet} < 60$ GeV/c
 $|\eta_{jet}| < 0.7, \ R = 0.2$

Groomed

- ALICE 0-10% Pb-Pb data
- ALICE Preliminary
 $\sqrt{s_{NN}} = 5.02$ TeV
 Ch.-particle anti-k_T jets
 $40 < p_T^{jet} < 60$ GeV/c
 $|\eta_{jet}| < 0.7, \ R = 0.2$
 SD: $z_{cut} = 0.2, \beta = 0$

Additional $\lambda_{x=1}$ available:
ALI-PREL-506909

- JEWEL (recolls off)
- JEWEL (recolls on)
- JETSCAPE (MATTER+LBT)
- Higher-Twist parton E-loss
- Hybrid model (no elastic)
- Hybrid model (with elastic)
From hadron z to subjet z_r

Hadrons in jets

![Graph showing ratio of jet fragmentation for different radii and energies.]

- Data points for γ-tag (pT = 80-126 GeV, pT = 63-144 GeV)
- Inclusive jets (pT = 80-110 GeV)
- Data points for pp (25 pb⁻¹)
- Data points for Pb+Pb (0.49 nb⁻¹)
- SCET G results of theoretical calculations at particle level.

Subjets in jets

Cluster inclusive jets with radius R, then recluster with anti-k_t with radius r

\[z_r = \frac{p_{T_{ch\,subjet}}}{p_{T_{ch\,jet}}} \]

- Probe higher z than hadron fragmentation measurements
- Opportunity to test universality of jet fragmentation functions

\[J_{r,med}(z) = J_{med}(z) \]

parton \rightarrow subjet \rightarrow jet

See also: CMS PRC 90, 024908 (2014)

ATLAS PRL 123 042001 (2019)

Qiu, Ringer, Sato JHEP 07 (2019) 041
Kang, Ringer, Waalewijn JHEP 07 (2017) 064
Subjet fragmentation — pp

Measurements described well by pQCD in \(0.1 \lesssim z_r \lesssim 0.9\)

\(Kang, Ringer, Waalewijn \ JHEP 07 (2017) 064\)

At small \(z_r\), the pQCD calculation fails due to lack of small \(z_r\) resummation

□ Connection to parton-hadron duality

\(Neill, Ringer JHEP 06 (2020) 086\)
\(Neill JHEP 03 (2021) 081\)
Subjet fragmentation — Pb-Pb

Leading subjets

<table>
<thead>
<tr>
<th>ALICE-PUBLIC-2022-016</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALICE Preliminary</td>
</tr>
<tr>
<td>$\sqrt{s_{\text{NN}}} = 5.02$ TeV</td>
</tr>
<tr>
<td>Charged-particle anti-k_T jets</td>
</tr>
<tr>
<td>$R = 0.4$</td>
</tr>
<tr>
<td>$</td>
</tr>
<tr>
<td>$80 < p_T^{\text{jet}} < 120$ GeV/c</td>
</tr>
<tr>
<td>anti-k_T subjets $r = 0.1$</td>
</tr>
</tbody>
</table>

Pb-Pb/pp

- Medium jet functions
- JETSCAPE
- JEWEL, recoils on
- JEWEL, recoils off

New

Hint of hardening distribution at intermediate z_r

- Large quark-gluon differences in vacuum
- Competing effects
 - Gluon suppression \rightarrow larger z_r
 - Soft radiation \rightarrow smaller z_r

Well-described by most theoretical predictions

- Consistent with universality of jet fragmentation in QGP

Quark Matter 2022, Kraków

April 6, 2022
Subjet fragmentation — Pb-Pb

Leading subjets

ALICE-PUBLIC-2022-016

- **ALICE Preliminary**
 - $\sqrt{s_{NN}} = 5.02$ TeV
 - Charged-particle anti-k_T jets
 - $R = 0.4$, $|\eta| < 0.5$
 - $80 < p_T^{ch, jet} < 120$ GeV/c
 - anti-k_T subjets $r = 0.1$

- **Pb-Pb 0–10%**

- Systematic uncertainty

![Graph showing subjet fragmentation](image)

Turnover of ratio as $z_r \to 1$

- At $z_r \to 1$, the sample becomes closer to purely quark jets!
- Expose region depleted by soft medium induced emissions

New path to disentangle quenching effects

ALICE-PUBLIC-2022-016

- **Medium jet functions**
 - JETSCAPE
 - JEWEL, recoils on
 - JEWEL, recoils off

- **Pythia8 pp** $\sqrt{s} = 5$ TeV

- Anti-Quark, $R=0.4$, $|\eta| < 1$ jets from ch. part.; subjet $r=0.1$
 - Quark fraction, inclusive subjets
 - Gluon fraction, inclusive subjets
 - Quark fraction, leading subjets
 - Gluon fraction, leading subjets

James Mulligan, LBNL

Quark Matter 2022, Kraków

April 6, 2022
Subjet fragmentation — Pb-Pb

Ratio of Pb-Pb distributions for different r

- Partial cancellation of systematic uncertainties

Models capture general trend, but quantitatively disagree with data

- Note self-normalization condition

Measured data indicates broader jets at large z_r than models

ALICE Preliminary Pb–Pb 0–10%
$\sqrt{s_{NN}} = 5.02$ TeV
Charged-particle anti-k_T jets
$R = 0.4$, $n_{\text{jet}} < 0.5$
$100 < p_T^{\text{ch jet}} < 150$ GeV/c
anti-k_T subjets

Models capture general trend, but quantitatively disagree with data

- Note self-normalization condition

Measured data indicates broader jets at large z_r than models
Summary

By measuring carefully chosen observables…

- Calculable in proton-proton collisions
- Corrected for background and detector effects

...we are producing an emerging picture of the jet fragmentation pattern

New measurements of groomed and ungroomed jet angularities

- Insight into girth/mass puzzle
- Systematic measurement for Bayesian inference of medium properties

New measurements of subjet fragmentation distributions

- Access large \(z_r \) region — quark-gluon separation using substructure
- Universality tests of jet fragmentation in QGP
backup
Jet angularities in Pb-Pb

Deviations in pp baseline can induce disagreement in Pb-Pb/pp ratio