Study of path-length dependent energy loss of jets in p-Pb and Pb-Pb collisions with ALICE

Caitie Beattie
On Behalf of the ALICE Collaboration

Quark Matter
6.4.2022
Jet energy loss

- Jets lose energy due to interactions with the QGP!
- Microscopic mechanism is well-studied theoretically.
- Theoretical relationship between mechanism and path-length dependence.

Assuming a static medium in the weakly coupled limit...

\[\sim L \]

\[\sim L^2 \]

Jet energy loss

- Jets lose energy due to interactions with the QGP!
- Microscopic mechanism is well-studied theoretically.
- Theoretical relationship between mechanism and path-length dependence.

But how can we access this experimentally?

Assuming a static medium in the weakly coupled limit...

Event-plane angles

Semicentral collisions generate an anisotropic overlap region.

It is expected that the in-plane axis will be shorter than the out-of-plane axis.

Parton energy loss is expected to be greater along the out-of-plane axis if path-length dependence is a leading effect.
The ALICE detector

1. Time Projection Chamber
 Excellent tracking of charged particles.

2. EMCal
 Used for measurement of neutral constituents.

3. V0
 Forward detector used to measure event-plane angles.

ALICE is well-suited to measure soft-hard correlations of interest.

\[\text{Pb-Pb, } \sqrt{s_{NN}} = 5.02 \text{ TeV} \]
Approaches to constraining path-length dependence

1. Event-Shape Engineering

2. v_2 Measurements

3. Correlation Studies
 - π^0 - hadrons
 - jet - hadrons
Approaches to constraining path-length dependence

1. Event-Shape Engineering
2. v_2 Measurements
3. Correlation Studies
 - π^0 - hadrons
 - jet - hadrons
Event-shape engineering

Event-Shape Engineering (ESE) classifies events according to their anisotropy **within a centrality class.**

\[q_2 = \frac{|Q_2|}{\sqrt{M}} \]

\[Q_2 = \frac{1}{M} \left(\sum_{i=1}^{M} \cos(2\varphi_i), \sum_{i=1}^{M} \sin(2\varphi_i) \right) \]

\(\varphi_i = \) azimuthal angle of \(i^{th} \) particle

\(M = \) multiplicity
Event-shape engineering

Event-Shape Engineering (ESE) classifies events according to their anisotropy within a centrality class.

\[q_2 = \frac{|Q_2|}{\sqrt{M}} \]

\[Q_2 = \frac{M}{\sum_{i=1}^{M} \cos(2\varphi_i), \sum_{i=1}^{M} \sin(2\varphi_i)} \]

\(\varphi_i \) = azimuthal angle of \(i^{th} \) particle

How can we exploit this to study path-length dependent energy loss?
Event-shape engineering

Greater **in- vs. out-of-plane differences** are predicted for large q_2 events than for small q_2 events.

$$\bar{L} = \int \frac{1}{\gamma} u_\mu \, dL^\mu$$

γ = Lorentz factor
u_μ = local fluid velocity

q_2 class
$\Delta\phi$ limit

- 0 - 100%
- 0 - 10%
- 90 - 100%

Beattie, et. al., arxiv:2203.13265
Event-shape engineering

Greater **in- vs. out-of-plane differences** are predicted for large q_2 events than for small q_2 events.

To study this in data, we can consider the jet **spectra** separated by ESE class.
Event-shape engineering

Comparison of jet spectra from large and small q_2 events is consistent with unity.

ALICE Preliminary
30–50% Pb–Pb, $\sqrt{s_{NN}} = 5.02$ TeV
Charged-particle jets, anti-k_T, $R = 0.2$
$p_T^{\text{lead track}} > 5$ GeV/c, $|\eta_{\text{jet}}| < 0.7$

Additional q_2^{V0A} cut imposed for autocorrelations.
Event-shape engineering

Large q_2 events show significant out vs. in plane difference at mid p_T
Event-shape engineering

Small q_2 events show less out vs. in plane difference at mid p_T

ALICE Preliminary
30–50% Pb–Pb, $\sqrt{s_{NN}} = 5.02$ TeV
Charged-particle jets, anti-k_T, $R = 0.2$
$p_T^{lead \text{ track}} > 5$ GeV/c, $|\eta_{jet}| < 0.7$
Event-shape engineering

Suppression of out-of-plane yields relative to in-plane, more significant for large q_2!

Diagram Description:
- **ALICE Preliminary**
 - 30–50% Pb–Pb, $\sqrt{s_{NN}} = 5.02$ TeV
 - Charged-particle jets, anti-k_T, $R = 0.2$
 - $p_T^{\text{lead track}} > 5$ GeV/c, $|\eta_{\text{jet}}| < 0.7$

Graph Details:
- Ratios corrected for reaction-plane resolution
- 30% large q_2^{VOC}
- 30% small q_2

Note:
- Additional q_2^{V0A} cut imposed for autocorrelations.
Approaches to constraining path-length dependence

1. Event-Shape Engineering

2. v_2 Measurements

3. Correlation Studies
 - π^0 - hadrons
 - jet - hadrons
Approaches to constraining path-length dependence

1. Event-Shape Engineering

2. v_2 Measurements

3. Correlation Studies
 \[\pi^0 \text{- hadrons} \]
 \[\text{jet - hadrons} \]
Jet-particle v_2

We can explore lower in p_T by considering the jet particle v_2.

![Graph showing the correlation between v_2 and p_T]
Jet-particle v_2

We can explore lower in p_T by considering the jet particle v_2.

Non-zero v_2 is indicative of suppressed out-of-plane jet activity, consistent with path-length dependence.
But when we look in p-Pb, we also see non-zero v_2!

Is the jet particle v_2 indicative of jet quenching, or something else?

See talks by Filip Krizek and Marianna Mazzilli!
Jet-particle v_2

When comparing p-Pb and Pb-Pb, we see the v_2 magnitude is different but comparable.

Are different mechanisms at play for the v_2 in p-Pb and Pb-Pb?
Jet-particle v_2

When comparing p-Pb and Pb-Pb, we see the v_2 magnitude is different but comparable.

Are different mechanisms at play for the v_2 in p-Pb and Pb-Pb?
Jet-particle v_2

When comparing p-Pb and Pb-Pb, we see the v_2 magnitude is different but comparable.

Are different mechanisms at play for the v_2 in p-Pb and Pb-Pb?
1. Event-Shape Engineering
2. v_2 Measurements
3. Correlation Studies
 - π^0 - hadrons
 - jet - hadrons
Approached to constraining path-length dependence

1. Event-Shape Engineering

2. v_2 Measurements

3. Correlation Studies

π^0 - hadrons
jet - hadrons
Correlation studies

We can look for high-$p_T \pi^0$s (or jets), and study the modification of associated hadrons.

Look first at near-side and away-side yields.

Then consider how these comparisons vary with event-plane.
\[\pi^0 \text{ - hadron correlations} \]

No evidence of modification...

...for wide range of \(p_T^{\text{assoc}} \) to high precision.
\(\pi^0 \) - hadron correlations

...but none predicted by JEWEL (w/o recoils).

NEW for QM!

Jet Energy Loss
Event Shape Engineering
Jet Particle \(v_2 \)
Correlations
Conclusions
Backup

Path-length not the leading contributor for this observable.
Jet-hadron correlations

Away-side modification at low p_T^{assoc} ...

...with work being done to push to lower p_T^{assoc}. Stay tuned!
Jet-hadron correlations

Away-side modification at low p_T^{assoc}...

NEW for QM!

Jet Energy Loss
Event Shape Engineering
Jet Particle v_2
Correlations
Conclusions
Backup

Suppression not seen in JEWEL (w/o recoils).

Caitie Beattie
Yale University

Quark Matter 2022
Approaches to constraining path-length dependence

1. Event-Shape Engineering

2. \(v_2 \) Measurements

3. Correlation Studies
 \(\pi^0 \)-hadrons
 jet - hadrons
Summary

• **Event-Shape Engineering** studies show significant event-plane dependence in more anisotropic events.
• Non-zero jet-particle v_2 shows event-plane dependence in p-Pb and Pb-Pb.
• **Correlation** studies show mixed event-plane dependence, depending on observable.

Not all event-plane observables are sensitive to path-length differences.

Observables that are most sensitive show results consistent with path-length dependent energy loss.
<table>
<thead>
<tr>
<th>Summary</th>
<th>ALICE Jet Results at QM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal: energy loss, path length dependence</td>
<td>Transverse: wide vs. narrow, quark/gluon, intrajet broadening</td>
</tr>
<tr>
<td>Isolated photon-jet correlations: Alwina Liu</td>
<td>ALICE</td>
</tr>
<tr>
<td>Tues. 16:30</td>
<td>Path length dependence in Pb–Pb and p–Pb collisions: Caitie Beattie</td>
</tr>
<tr>
<td>Wed. 8:40</td>
<td>Jet angularity and fragmentation in Pb-Pb: James Mulligan Wed. 10:00</td>
</tr>
<tr>
<td>Search for jet quenching in high-multiplicity pp collisions: Filip Krizek</td>
<td>ALICE</td>
</tr>
<tr>
<td>Wed. 12:50</td>
<td>Heavy-flavor jets from small to large systems: Marianna Mazzilli Wed. 14:40</td>
</tr>
<tr>
<td></td>
<td>R-dependence of jet suppression and groomed jet splittings in Pb–Pb: Hannah Bossi Thurs. 18:10</td>
</tr>
<tr>
<td></td>
<td>Jet acoplanarity and energy flow within jets in Pb–Pb and pp: Rey Cruz-Torres Thurs. 18:30</td>
</tr>
</tbody>
</table>

Caitie Beattie
Yale University
Quark Matter 2022
Backup: The R_{pPb}

The R_{pPb} is consistent with unity.

Backup: Jet-Particle v_2

Signal – extracted using double Gaussian

Background – obtained from sum of flow harmonics

Data

ALICE Preliminary

p-Pb $\sqrt{s_{NN}} = 5.02$ TeV

TPC-TPC Correlation Fit

V0A: 0-10%

Signal

ALICE Preliminary

p-Pb $\sqrt{s_{NN}} = 5.02$ TeV

TPC-TPC Correlation Fit

V0A: 0-10%

Background

ALICE Preliminary

p-Pb $\sqrt{s_{NN}} = 5.02$ TeV

TPC-TPC Correlation Fit

V0A: 0-10%
Backup: Jet-Hadron Analysis - Reaction Plane Fit

\[
d^2 N^{bgd}(\Delta \phi, \Delta \eta) = \pi \beta R \left(1 + \sum_{n=1}^{\infty} 2 \nu_n^R, t \nu_n^a \cos n \Delta \phi \right)
\]

\[
\beta R = B \left(1 + \sum_{k=2,4,6,\ldots} 2 \nu_k^t \cos k \phi_s \sin k c \frac{R_n}{k c} \right)
\]

ALICE Performance

- **Inclusive orient.**
 - $2.0 < \langle p_T^{assoc} \rangle < 3.0$ GeV/c
 - $p_T^{lead} > 3$ GeV
 - $p_T^{beam} > 5$ GeV/c

Mid-plane orient.

\[\chi^2/\text{NDF} = 44.8/48 = 0.934 \]

Out-of-plane orient.

- Background dominated
- Signal dominated

Background: $0.8 < |\Delta \eta| < 1.2$

- **ALICE** $\sqrt{s}_{NN} = 5.02$ TeV, 30–50%
- **Anti-k_T** $R = 0.2$
- **Signal + Background:** $|\Delta \eta| < 0.6$
- Scale uncertainty: 4%