Search for jet quenching in high-multiplicity pp collisions using inclusive and semi-inclusive jet production in ALICE

Filip Krizek
for the ALICE Collaboration
Nuclear Physics Institute of the Czech Academy of Sciences
QGP in small collision systems?

QGP-like signatures in high-multiplicity pp and pA:
- Collective phenomena (ridge, v_2)
- Strangeness enhancement

F. Krizek Search for jet quenching in HM pp 13 TeV in ALICE QM 2022

CMS, JHEP 09 (2010) 091
Jet quenching in small collision systems?

But at the same time jet quenching signal is below current sensitivity

F. Krizek Search for jet quenching in HM pp 13 TeV in ALICE QM 2022
Jet quenching observables

- Yield suppression relative to min. bias pp → energy transport out-of-cone
 - Measurement of inclusive suppression (R_{AA}) requires Glauber scaling → ill defined in high-multiplicity pp collisions
- Jet substructure modification
- Jet deflection → dijet acoplanarity

D. A. Appel, PRD 33, 717 (1986)
J.P. Blaizot and L. McLerran, PRD 34, 2739 (1986)

F. Krizek Search for jet quenching in HM pp 13 TeV in ALICE QM 2022
Event activity selection in pp at $\sqrt{s} = 13$ TeV

- **Trigger:**
 - Minimum bias (MB) $L_{\text{int}} \approx 32$ nb$^{-1}$
 - High multiplicity (HM) $L_{\text{int}} \approx 10$ pb$^{-1}$

- **Event activity (EA) selection:**
 - $V0M = V0A + V0C$
 - HM is 0.1% of MB cross section
 - $5 < V0M / \langle V0M \rangle < 9$
 - $\langle V0M \rangle = \text{mean of } V0M \text{ in MB}$

F. Krizek Search for jet quenching in HM pp 13 TeV in ALICE QM 2022
Charged-particle jets in MB and event activity biased pp collisions at $\sqrt{s} = 13$ TeV

How does the imposed event activity selection bias the spectrum shape?

- Tracks
 \[|\eta_{\text{track}}| < 0.9 \]
 \[0 < \varphi_{\text{track}} < 2\pi \]
 \[p_{T,\text{track}} > 150 \text{ MeV/c} \]

- Charged-particle jets
 Anti-k_T algorithm
 \[|\eta_{\text{jet}}| < 0.9 - R \]
 \[R = 0.2 \text{ – } 0.7 \]

- \[p_{T,\text{ch jet}} = p_{T,\text{ch jet}}^{\text{raw}} - \rho A_{\text{jet}} \]

How does the imposed event activity selection bias the spectrum shape?

F. Krizek Search for jet quenching in HM pp 13 TeV in ALICE QM 2022
Event activity (EA) bias affects the shape mostly for $p_{T,ch jet} < 20 \text{ GeV}/c$

- Bias on high-EA causes increase of jet yield per event
 - May arise from increase in average number of hard scatterings per event

New

arXiv:2202.01548
Self-normalized jet yield versus self-normalized multiplicity

- Jets with $p_{T,jet}^{ch} > 9$ GeV/c follow non-linear trend similar to J/ψ in midrapidity

 John Dello Stritto, talk on 7 Apr at 4 pm
 Parallel Session T14: Hadron prod. and col. dyn. I

- Electrons from W decay follow linear trend

 Shingo Sakai, talk on 7 Apr at 5 pm
 Parallel Session T13: Electroweak probes II

- Overshoot of the trend by PYTHIA at high charged-particle multiplicities

New

F. Krizek
Search for jet quenching in HM pp 13 TeV in ALICE
QM 2022
arXiv:2202.01548
Ratios of jet p_T spectra with different R

MB ratio of p_T-differential cross section spectra:
- independent of \sqrt{s}

EA-selected ratio of spectra:
- small R: independent of EA
- large R: hint of EA dependence
Impact of high-EA bias on jet longitudinal fragmentation

Poster by Debjani Banerjee
Poster Session 1 T05_1 on 6 Apr

HM event selection \rightarrow \text{softer jet fragmentation}

This is consistent with larger portion of jets coming from NLO processes

HM event activity selection:

\[5 < \frac{V_0}{\langle V_0 \rangle} < 9 \]

0.1% of MB cross section

F. Krizek Search for jet quenching in HM pp 13 TeV in ALICE QM 2022
Hadron-jet acoplanarity

Jets recoiling from high-p_{T} trigger hadron (TT)

Data-driven statistical approach to remove recoil-jet yield uncorrelated to TT

\[\Delta_{\text{recoil}} (\Delta \varphi) = \frac{1}{N_{\text{trig}}} \frac{dN_{\text{jet}}}{d\Delta \varphi} \bigg|_{\text{TT}(20,30) & p_{T,jet}^{\text{ch}}} - c_{\text{ref}} \cdot \frac{1}{N_{\text{trig}}} \frac{dN_{\text{jet}}}{d\Delta \varphi} \bigg|_{\text{TT}(6,7) & p_{T,jet}^{\text{ch}}} \]

\[\text{TT}\{X,Y\} \text{ means } X < p_{T,\text{trig}} < Y \text{ GeV/c} \]
Distributions of hadron-jet acoplanarity

- HM acoplanarity distributions relative to MB
 - suppressed back-to-back correlation
 - broader

The effect is stronger for low p_T jets

HM event activity selection:
- 5 < V0M / $\langle V0M \rangle$ < 9
- 0.1% of MB cross section

F. Krizek Search for jet quenching in HM pp 13 TeV in ALICE QM 2022
Comparison of hadron-jet acoplanarity with PYTHIA

Quantitative comparison to PYTHIA 8 Monash shows similar suppression pattern.

The effect is not due to jet quenching.

Use PYTHIA to explore the origin of the effect.
PYTHIA : recoil jet η_{jet} versus $p_{T,\text{jet}}$

HM events:
- significant bias in distribution of high-p_T recoil jets
- enhancement in forward trigger detector acceptance
- V0A and V0C have asymmetric coverage
Summary

• Event activity bias on inclusive jet production
 - affects largely the yield of high p_T jets
 - has weak impact on the shape of jet p_T spectrum

• Semi-inclusive jet production
 - broadening and suppression of back-to-back hadron-jet correlation in HM pp relative to MB
 - quantitatively reproduced by PYTHIA

• HM event selection
 - biases towards multi-jet final states
 - masks potential jet quenching signatures

• Significant issue for all HM analyses in small collision systems
Backup
Hadron-jet observables and T_{AA}

Calculable at NLO pQCD

\[
\frac{1}{N_{\text{trig}}^{AA}} \left. \frac{d^2 N_{\text{jet}}^{AA}}{dp_{T,\text{jet}}^{ch} \, d\eta_{\text{jet}}} \right|_{p_{T,\text{trig}} \in \text{TT}} = \left(\frac{1}{\sigma^{AA \rightarrow h+X}} \cdot \frac{d^2 \sigma^{AA \rightarrow h+jet+X}}{dp_{T,\text{jet}}^{ch} \, d\eta_{\text{jet}}} \right) \left|_{p_{T,h} \in \text{TT}} \right.
\]

measured

from theory

In case of no nuclear effects

\[
\frac{1}{N_{\text{trig}}^{AA}} \left. \frac{d^2 N_{\text{jet}}^{AA}}{dp_{T,\text{jet}}^{ch} \, d\eta_{\text{jet}}} \right|_{p_{T,\text{trig}} \in \text{TT}} = \left(\frac{1}{\sigma^{pp \rightarrow h+X}} \cdot \frac{d^2 \sigma^{pp \rightarrow h+jet+X}}{dp_{T,\text{jet}}^{ch} \, d\eta_{\text{jet}}} \right) \left|_{p_{T,h} \in \text{TT}} \right. \times \frac{T_{AA}}{T_{AA}}
\]

- This coincidence observable is self-normalized, no requirement of T_{AA} scaling
- No requirement to assume correlation between Event Activity and collision geometry
Jet quenching measurements with hadron-jet correlations

- Jets recoiling from high-p_T trigger track (TT)
- Data-driven statistical approach to remove recoil-jet yield uncorrelated to TT (including MPI)
- Does not impose fragmentation bias on the recoil jet

\[
\Delta_{\text{recoil}}(p_{T,\text{ch,jet}}^{\text{ch}}) = \frac{1}{N_{\text{trig}}} \left. \frac{dN_{\text{jet}}}{dp_{T,\text{ch,jet}}^{\text{ch}}} \right|_{TT\{20,30\}} - c_{\text{ref}} \cdot \left. \frac{1}{N_{\text{trig}}} \frac{dN_{\text{jet}}}{dp_{T,\text{ch,jet}}^{\text{ch}}} \right|_{TT\{6,7\}}
\]

Coincidence observable is self-normalized, no requirement of T_{AA} scaling:

\[
\left. \frac{1}{N_{\text{trig}}} \frac{dN_{\text{jet}}}{dp_{T,\text{ch,jet}}^{\text{ch}}} \right|_{TT} = \left. \left(\frac{1}{\sigma_{pp\rightarrow h+X}} \cdot \frac{d\sigma_{pp\rightarrow h+jet+X}}{dp_{T,\text{jet}}^{\text{ch}}} \right) \right|_{TT} \times \frac{T_{AA}^{TT}}{T_{AA}}
\]

TT\{X,Y\} means X < $p_{T,\text{trig}}$ < Y GeV/c

ALICE, JHEP 09 (2015) 170

F. Krizek Search for jet quenching in HM pp 13 TeV in ALICE QM 2022
PYTHIA simulations

- Charged particles $|\eta| < 6$
 fully covering V0C and V0A
- Events containing TT{20,30} or TT{6,7} in $|\eta|<0.9$
- Anti-k_T charged particle $R=0.4$ jets in
 1) ALICE central barrel $|\eta_{jet}| < 0.5$
 2) broad η range $|\eta_{jet}| < 5.6$

V0M defined by the number of charged, final state particles in V0A & V0C
PYTHIA: Number of recoil jets versus event activity in ALICE acceptance

Distrib. of the number of recoil jets above p_T threshold:

- HM trigger suppresses events with 1 hard recoil jet in the ALICE central barrel
- HM trigger enhances multi-jet events in small systems

F. Krizek Search for jet quenching in HM pp 13 TeV in ALICE QM 2022