

Precision studies of the strong interaction in Λ -hadron systems up to S=-3 with ALICE

V. Mantovani Sarti on behalf of the ALICE Collaboration 06.04.2022 Quark Matter 2022, Kraków

Strong interaction between Λ and hadrons

- Perfect probe for understanding strong interaction with strangeness
- |S| = 1: ΛN interaction
 - Equation of state of nuclear matter in neutron stars with hyperons
 - Input for three-body YNN
- |S| = 2 and $|S| = 3 : \Lambda\Lambda$ and $\Lambda\Xi$ interaction
 - Constraints for hypernuclei and effective QCD theories in multi-strange sector
 - Exotic bound states as H-dibaryon and N Ω dibaryon

R.L Jaffe PRL 38 (1977) 195-198 HAL QCD Coll. Nucl.Phys.A 998 (2020) 121737 HAL QCD Coll. Phys.Lett.B 792 (2019) 284-289

V. Mantovani Sarti – Quark Matter 2022

The femtoscopy technique at ALICE ALICE Correlation function Interacting potential *V(r *)* (MeV) $C(k^*)$ Repulsive Attractive $p_{\rm h}$ Attractive Emission source S(r*) Repulsive 0.5 1.5 2 0 50 100 150 200 r^* (fm) $k^*(\text{MeV}/c)$ Schrödinger equation Two-particle wave function $C(k^*) = \int S(\vec{r}^*) |\psi(\vec{k}^*, \vec{r}^*)|^2 d^3 \vec{r}^* = \mathcal{N}(k^*) \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)}$

Measuring $C(k^*)$, fixing the source $S(r^*)$, study the interaction

The emitting source in small colliding systems

- Data-driven analysis on p-p and p-A pairs
 - Possible presence of collective effects $\rightarrow m_T$ scaling of the core radius
 - Contribution of strongly decaying resonances with $c\tau \sim 1 \text{ fm}^{(*)}$
- Common universal core source for baryons
- Core constrained from p-p pairs
 - Fixing of the source at corresponding $\langle m_T \rangle$ \Rightarrow direct access to the interaction

Particle	Res.	<ct> (fm)</ct>
р	∆,N*	1.6
\wedge	Σ,Σ*	4.7

|S| = 1: Ap interaction

Low statistics and not available at low momenta

J.Haidenbauer, N.Kaiser et al., NPA 915, 24 (2013) J.Haidenbauer, U. Meißner, Eur.Phys.J.A 56 (2020)

|S| = 1: Ap interaction

• $\Lambda N-\Sigma N$ coupled system \rightarrow 2-body coupling to ΣN is not (yet) measured

J.Haidenbauer, N.Kaiser et al., NPA 915, 24 (2013) J.Haidenbauer, U. Meiβner, Eur.Phys.J.A 56 (2020)

|S| = 1: Ap interaction

NLO13: J.Haidenbauer, N.Kaiser et al., NPA 915, 24 (2013) NLO19: J.Haidenbauer, U. Meiβner, Eur.Phys.J.A 56 (2020) (*)D. Gerstung et al. Eur.Phys.J.A 56 (2020) 6, 175

|S| = 1: p Λ interaction in the femtoscopic era

|S| = 1: Ap interaction and access to the ΣN coupling

- Comparison with xEFT potentials
 - Sensitivity to different ΣN coupling strength
 - − NLO19 favoured ($n_{\sigma} = 3.9$)→ attractive interaction of Λ at large densities
 - Larger ANN repulsion required to stiffen the Equation of State at large densities(*)

Three-body correlations (R. Del Grande) Parallel Session T08 06/04 15:00

• New constraints to improve current theory

ALICE Coll. arXiv:2104.04427, submitted to PLB (*)D. Gerstung et al. ", EPJ. A 56 (2020) 175

|S|=2 : constraining the $\Lambda\Lambda$ interaction with femtoscopy

- Important for existence of H-dibaryon
- AA correlation measured in pp MB 7, 13 TeV and p-Pb 5.02 TeV
- Scan in scattering parameter space (f_0^{-1}, d_0) and express agreement data/model in number of σ deviations

ALICE Coll. Phys.Lett.B 797 (2019) 134822

|S|=2 : constraining the $\Lambda\Lambda$ interaction with femtoscopy

- Important for existence of H-dibaryon
- AA correlation measured in pp MB 7, 13 TeV and p-Pb 5.02 TeV
- Scan in scattering parameter space (f₀⁻¹, d₀) and express agreement data/model in number of σ deviations
 - Agreement with hypernuclei data and lattice predictions
- Most precise upper limit on the binding energy of the H-dibaryon

ALICE Coll. Phys.Lett.B 797 (2019) 134822

 $B_{\Lambda\Lambda} = 3.2^{+1.6}_{-2.4} (stat)^{+1.8}_{-1.0} (syst) \text{ MeV}$

|S| = 3 : first measurements of the $\Lambda \Xi$ interaction

- $\Lambda \Xi^{-}$ correlation in high-multiplicity pp collisions 13 TeV
- Presence of inelastic channels:

- Perfect test for lattice QCD potentials(*):
 - Sizeable $\Lambda \Xi$ - $\Sigma \Xi$ coupling from HAL QCD
 - \rightarrow data favour results with only $\Lambda \Xi$ elastic (n σ = 1.64)
 - \rightarrow data not yet sensitive to the coupling

ALICE-PUBLIC-2022-009 <u>https://cds.cern.ch/record/2805489</u> (*) HAL QCD Coll. EPJ Web of Conferences 175, 05013 (2018)

|S| = 3 : constraining chiral effective field theories

• $\Lambda \Xi^{-}$ correlation in high-multiplicity pp collisions 13 TeV

- Scattering parameters from state-of-the-art χEFT(*):
 - Potentials with large interaction overestimate the data

Model	Cut-off	Singlet (fm)		Triplet (fm)	
		f ₀	d ₀	f ₀	d ₀
NLO19	500	0.99	5.77	1.66	1.49

ALICE-PUBLIC-2022-009 <u>https://cds.cern.ch/record/2805489</u> (*)J. Haidenbauer, U.G Meißner arXiV:2201.08238v1 (2022)

|S| = 3 : constraining chiral effective field theories

• $\Lambda \Xi^{-}$ correlation in high-multiplicity pp collisions 13 TeV

- Scattering parameters from state-of-the-art χEFT(*):
 - Potentials with large interaction overestimate the data
 - Data favour potentials with shallow interaction
- First experimental constraint in |S|=3 sector for χEFT

ALICE-PUBLIC-2022-009 <u>https://cds.cern.ch/record/2805489</u> (*)J. Haidenbauer, U.G Meißner arXiV:2201.08238v1 (2022)

$|S|=3:\Lambda\Xi$ interaction and its role in $p\Omega$ interaction

- $\Lambda \Xi^{-}$ correlation in high-multiplicity pp collisions 13 TeV
- Presence of inelastic channels:

• No p- Ω cusp structure visible with current statistics \rightarrow indications of a negligible coupling to N Ω

ALICE-PUBLIC-2022-009 https://cds.cern.ch/record/2805489

$|S| = 3 : \Lambda \Xi$ interaction and its role in p Ω interaction

- Attractive p Ω interaction \rightarrow di-baryon with E_b~2.5 MeV
- Presence of inelastic channels:

- First measurements of $p\Omega$ in pp HM 13 TeV by ALICE
 - Strong attractive interaction
- Comparison with lattice predictions in two cases:
 - No / dominant inelastic contributions
- Data in agreement with
 - Negligible inelastic contributions \rightarrow support the scenario obtained in $\Lambda\Xi$ measured correlations
 - No evidence of bound state

ALICE Coll. Nature 588 (2020) 232-238

Summary and Outlook

- Femtoscopy in small colliding systems \rightarrow unique way to access multi-strange QCD sector
- Precision studies of |S| = 1,2,3 sector with Λ -hadrons correlations in ALICE
 - Most precise data on the Λp interaction \rightarrow physics of neutron stars
 - Most precise upper limit on H-dibaryon energy
 - First measurements of $\Lambda \Xi^-$ interaction \rightarrow constraints for lattice QCD calculations and chiral potentials
- More precision studies within reach with large statistics in Run 3 & 4!

For additional interesting femtoscopic results at ALICE:

Three-body interactions, R. Del Grande Parallel Session T08 06/04 15:00 Interaction with charmed mesons, F. Grosa Parallel Session T08 06/04 15:40

Additional slides

High multiplicity pp collisions

- pp collisions at ALICE are a perfect factory to produce a large amount of multi-strange hyperons ALICE Coll. Nature Phys. 13 (2017) 535-539
- In the paper:
 - High multiplicity events pp 13 TeV \rightarrow enhanced yields of multistrange hadrons
- High capability for particle identification at transverse momenta below 1 GeV/c
 - hyperons detected through weak decays

 $\Xi^- o \Lambda \pi^- \ \Omega^- o \Lambda K^-$

low contamination and high purity samples

Hyperons @ ALICE in pp Collisions

 $M_{\pi\Lambda}$ (GeV/ c^2)

1.2

 $M_{_{\Lambda\gamma}+\overline{\Lambda}\gamma}$ (GeV/ c^2)

1.21

1.19

 Determine the amount of impurities and secondaries based on a data-driven MC study as done in <u>Phys.Rev. C99 (2019) no.2, 024001</u>

- Purity (\mathcal{P}) from fits to the invariant mass distribution or MC data
- Feed-down fractions (f) from MC template fits
- $\lambda_i = \mathcal{P}_{i_1} f_{i_1} \mathcal{P}_{i_2} f_{i_2}$, where $i_{1,2}$ denote the two particles of the *i*-th contribution

The source function - Effect of short-lived resonances

- For Ξ^{-} and Ω^{-} no contributions!
- Average mass and average ct determined by the weighted average values of all resonances

Particle	M _{res} [MeV]	$ au_{ m res}$ [fm]
p	1361.52	1.65
Λ	1462.93	4.69
Σ^0	1581.73	4.28

.

The common source - The source pdf

Influence of the $\Lambda N - \Sigma N$ coupled channel

- ΣN-ΛN acts as an effective attraction
- Repulsion for Λ-p when the Σ-N – Λ-N coupled channel is neglected
 - strong coupling ⇒ dispersion repulsive effects ⇒ Shift of hyperon appearance towards higher densities
 - weak coupling ⇒ more attractive U_Λ(ρ₀,0)

J. Haidenbauer *et al.*, Eur. Phys. A (2017) 53, 121.

Phys.Lett.B 805 (2020) 135419

|S|=2: Λ interaction models

- AA correlation measured in pp MB 13 TeV and p-Pb 5.02 TeV
- Comparison with available theoretical models
 - large attraction and very weakly bound state discarded
 - data compatible with a bound state (ND46) or shallow attraction (ESC08)
- Scan in scattering parameter space and express agreement data/model in number of σ deviations

|S|=2 : $\Lambda\Lambda$ interaction and the H-dibaryon

 ${}^{6}_{\Lambda\Lambda}$ He -> ${}^{5}_{\Lambda}$ He + p + π - $\Delta B_{\Lambda\Lambda} = 0.67 \pm 0.17$ MeV

H. Takahashi et al., PRL 87 (2001) 212502

(*) HAL QCD Coll. Nucl.Phys.A 998 (2020) 121737 A. Ohnishi et al., Few Body Syst. 62 (2021) 3, 42 Y. Kamiya et al., PRC 105 (2022)

(**) ALICE Coll. Phys. Rev. Lett 123, (2019) 112002 ALICE Coll. Nature 588, 232–238 (2020)

- H-dibaryon: hypothetical bound state of *uuddss*
 - No final experimental evidences so far
 - Recent lattice QCD calculations at physical point with $\Lambda\Lambda$ -NE coupled-channel(*) \rightarrow no bound state around $\Lambda\Lambda$ or NE threshold (**)

- Double-A hypernuclei measurements
 - weak attractive interaction
 - H-dibaryon binding energy $B_{\Lambda\Lambda} = 6.91 \pm 0.16 \text{ MeV}$

Can we improve the knowledge on the $\Lambda\Lambda$ interaction and the fate of the H dibaryon?

٠

Lattice QCD potentials of the |S| = 2 sector: $p - \Xi^{-}$ interaction

Direct comparison to HAL QCD potentials near physical quark masses(*) Presence of coupled-channels ٠ 2232 2255 2260 2309 2386 Σ0-Σ0 $\Lambda - \Lambda$ n-Ξ⁰ p-Ξ-Λ-Σ⁰ Σ+-Σk*=378 MeV/c Threshold k*=233 MeV/c

- Weak coupling to Λ - Λ channels expected ٠ from HAL QCD potentials
 - confirmed from femtoscopic (**) and hypernuclei measurements (***)

(*) T. Hatsuda Front. Phys. 13(6), 132105 (2018) (**) ALICE Coll. Phys. Lett. B 797 (2019) 134822 (***) Hayakawa et al. Phys. Rev. Lett. 126, 062501 (2021)

|S|=2 sector: $p-\Xi^{-}$ interaction and first test of LQCD

- Observation of the strong interaction beyond Coulomb
- Agreement with lattice calculations confirmed in pp and p-Pb colliding systems
- At finite density HAL QCD potentials predict in PNM a slightly repulsive U_{Ξ} ~+6 MeV $^{(*)}$ \rightarrow stiffening of the EoS

ALICE Coll, Phys. Rev. Lett 123, (2019) 112002

(*) HAL QCD Coll., PoS INPC2016 (2016) 277

Implications for neutron stars

- Using HAL QCD predictions at finite density $\rightarrow \Xi$ production pushed to higher densities \rightarrow stiffening of • EoS compatible with current measurements
- What about the three-body interactions? ٠

V. Mantovani Sarti - Quark Matter 2022/s. Rev. C 98:065804 (2018)

nucl-ex 2012.09806

$p-\Omega^{-}$ correlation function in pp at 13 TeV

ALICE Collaboration Nature 588 (2020) 232-238

- Model corrected for residual correlations and corrections
- Radius extracted from m_{T} differential p-p correlations (r \sim 0.9 fm)
- Enhancement above Coulomb
 → Observation of the strong interaction
- Agreement of lattice prediction depends on the treatment of inelastic channels
 - No clear depletion corresponding in the data

$\Lambda \Xi$ correlation in pp HM 13 TeV

						C(k*)	1.3	ALICE Preliminary pp $\sqrt{s} = 13 \text{ TeV}$ High Mult. (0–0.17% INEL>0) $\wedge -\Xi^- \oplus \overline{\Lambda} - \Xi^+ (\lambda = 32\%)$
potential	cut-off (MeV) / version	f_0^0	let d_0^0	f_0^1	d_0^1	n _o		$\chi EFT LO$ $\chi EFT NLO16$
	550	33.5	1.00	-0.33	-0.36	3.06-5.12		χ EFT NLO19
χEFI LO [11]	700	-9.07	0.87	-0.31	-0.27	0.78 - 1.60	1.1	NSC97a
χEFT NLO16 [14]	500	0.99	5.77	-0.026	142.9	0.56 - 0.93		Baseline
	650	0.91	4.63	0.12	32.02	0.91 - 1.61		
χEFT NLO19 [15]	500	0.99	5.77	1.66	1.49	5.47 - 7.26	-	-
	650	0.91	4.63	0.42	6.33	1.30 - 2.10	1	
NSC97a [12]		0.80	4.71	-0.54	-0.47	0.68 - 1.04		
HAL QCD [2]	$\Lambda \Xi - \Sigma \Xi$ eff.	0.60	6.01	0.50	5.36	1.43 - 2.34	-	
	$\Lambda \Xi - \Lambda \Xi$ only	_	—	-	—	0.64 - 1.04	09	
Baseline		-	-	-	-	0.78		T 4
							Ľ 0 5	60 100 150 200 250 300 <i>k</i> * (MeV/ <i>c</i>)

ALI-PREL-516888

Femtoscopy in small colliding systems

- Accessing the strong interaction \rightarrow relative distances of ~1-1.4 fm \rightarrow pp and p-Pb collisions
- Small interparticle distance \rightarrow doorway to studying large densities

- Absorption of p-Ω⁻ pairs in ³S₁ (^{2S+1}L_J)configuration by the channels below threshold dominate interaction
 - Not included in the lattice calculations so far \rightarrow Test of two cases:
 - Total absorption of all J = 1 pairs: $V^{J=1}(r) = -i\theta(r0 r) V_0$ with $V_0 \rightarrow \infty$ for r < 2 fm
 - Neglecting the absorption and same behavior as in the ⁵S₂ configuration
 - Coupled channel treatment missing so far
- Inelastic interactions suppressed for $p-\Omega^-$ pairs in 5S_2 configuration

Small Sources: Collective Effects and Strong Resonances

Elliptic flow

Radial flow

Anisotropic pressure gradients within the source

- Expanding source with constant velocity
- Different effect on different masses

Strong decays of broad resonances

U. A. Wiedemann, U. W. Heinz, Phys.Rept. 319, 145-230 (1999)

- Resonances with $c\tau \sim r_0 \sim 1$ fm (Δ^* , N^{*}, Σ^*) introduce an exponential tail to the source
- Different for each particle species

